import tensorflow as tf
import numpy as np
def add_layer(inputs,in_size,out_size,n_layer,activation_funcion=None):
layer_name='layer%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')
tf.summary.histogram(layer_name+'/weights',weights)
with tf.name_scope('biases'):
biases=tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
tf.summary.histogram(layer_name+'/biases',biases)
with tf.name_scope('Wx_plus_b'):
Wx_plus_b=tf.add(tf.matmul(inputs,weights),biases)
if activation_funcion is None:
outputs=Wx_plus_b
else:
outputs=activation_funcion(Wx_plus_b)
tf.summary.histogram(layer_name+'/outputs',outputs)
return outputs
x_data=np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape).astype(np.float32)
y_data=np.square(x_data)-0.5+noise
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])
l1=add_layer(xs,1,10,n_layer=1,activation_funcion=tf.nn.relu)
prediction=add_layer(l1,10,1,n_layer=2,activation_funcion=None)
with tf.name_scope('loss'):
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
tf.summary.scalar('loss',loss)
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess=tf.Session()
merged=tf.summary.merge_all()
writer=tf.summary.FileWriter('logs/',sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
rs=sess.run(merged,feed_dict={xs:x_data,ys:y_data})
writer.add_summary(rs,i)
网友评论