美文网首页
线性回归(2)

线性回归(2)

作者: zjh3029 | 来源:发表于2018-03-01 17:08 被阅读0次
    import tensorflow as tf
    import numpy as np
    
    def add_layer(inputs,in_size,out_size,n_layer,activation_funcion=None):
        layer_name='layer%s'%n_layer
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')
                tf.summary.histogram(layer_name+'/weights',weights)
    
            with tf.name_scope('biases'):
                biases=tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
                tf.summary.histogram(layer_name+'/biases',biases)
    
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b=tf.add(tf.matmul(inputs,weights),biases)
    
            if activation_funcion is None:
                outputs=Wx_plus_b
            else:
                outputs=activation_funcion(Wx_plus_b)
            tf.summary.histogram(layer_name+'/outputs',outputs)
        return outputs
    
    x_data=np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]
    noise=np.random.normal(0,0.05,x_data.shape).astype(np.float32)
    y_data=np.square(x_data)-0.5+noise
    
    xs=tf.placeholder(tf.float32,[None,1])
    ys=tf.placeholder(tf.float32,[None,1])
    
    l1=add_layer(xs,1,10,n_layer=1,activation_funcion=tf.nn.relu)
    prediction=add_layer(l1,10,1,n_layer=2,activation_funcion=None)
    
    with tf.name_scope('loss'):
        loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
        tf.summary.scalar('loss',loss)
        train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess=tf.Session()
    merged=tf.summary.merge_all()
    writer=tf.summary.FileWriter('logs/',sess.graph)
    sess.run(tf.global_variables_initializer())
    
    for i in range(1000):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if i%50==0:
            rs=sess.run(merged,feed_dict={xs:x_data,ys:y_data})
            writer.add_summary(rs,i)
    
    

    相关文章

      网友评论

          本文标题:线性回归(2)

          本文链接:https://www.haomeiwen.com/subject/bucnxftx.html