美文网首页
SqueezeNet

SqueezeNet

作者: 信步闲庭v | 来源:发表于2017-10-16 16:07 被阅读29次

The SqueezeNet architecture

Smaller CNNs offer at least three advantages: less computation, less bandwidth and more feasible to deploy on FPGAs. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques we are able to compress SqueezeNet to less than 0.5MB.

  • Strategy 1. Replace 3x3 filters with 1x1 filters.
  • Strategy 2. Decrease the number of input channels to 3x3 filters.
  • Strategy 3. Downsample late in the network so that convolution layers have large activation maps.
Fire Module Macroarchitectural view of our SqueezeNet architecture

Experiment

References:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, 2017,arXiv: Computer Vision and Pattern Recognition

相关文章

网友评论

      本文标题:SqueezeNet

      本文链接:https://www.haomeiwen.com/subject/bwzkuxtx.html