美文网首页大数据 爬虫Python AI SqlPython小哥哥
用Python获取摄像头并实时控制人脸 !

用Python获取摄像头并实时控制人脸 !

作者: 14e61d025165 | 来源:发表于2019-05-18 15:19 被阅读1次

    实现流程

    <bi style="box-sizing: border-box; display: block;">从摄像头获取视频流,并转换为一帧一帧的图像,然后将图像信息传递给opencv这个工具库处理,返回灰度图像(就像你使用本地静态图片一样)</bi><bi style="box-sizing: border-box; display: block;">程序启动后,根据监听器信息,使用一个while循环,不断的加载视频图像,然后返回给opencv工具呈现图像信息。</bi><bi style="box-sizing: border-box; display: block;">创建一个键盘事件监听,按下"d"键,则开始执行面部匹配,并进行面具加载(这个过程是动态的,你可以随时移动)。</bi><bi style="box-sizing: border-box; display: block;">面部匹配使用Dlib中的人脸检测算法来查看是否有人脸存在。如果有,它将为每个人脸创建一个结束位置,眼镜和烟卷会移动到那里结束。</bi><bi style="box-sizing: border-box; display: block;">然后我们需要缩放和旋转我们的眼镜以适合每个人的脸。我们将使用从Dlib的68点模型返回的点集来找到眼睛和嘴巴的中心,并为它们之间的空间旋转。</bi><bi style="box-sizing: border-box; display: block;">在我们实时获取眼镜和烟卷的最终位置后,眼镜和烟卷从屏幕顶部进入,开始匹配你的眼镜和嘴巴。</bi><bi style="box-sizing: border-box; display: block;">假如没有人脸,程序会直接返回你的视频信息,不会有面具移动的效果。</bi><bi style="box-sizing: border-box; display: block;">默认一个周期是4秒钟。然后你可以通过"d"键再次检测。</bi><bi style="box-sizing: border-box; display: block;">程序退出使用"q"键。</bi>

    这里我将这个功能抽象成一个面具加载服务,请跟随我的代码一窥究竟吧。

    • 1.导入对应的工具包

    Python学习交流群:1004391443,这里有资源共享,技术解答,还有小编从最基础的Python资料到项目实战的学习资料都有整理,希望能帮助你更了解python,学习python。

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">from time import sleep
    import cv2
    import numpy as np
    from PIL import Image
    from imutils import face_utils, resize
    try:
    from dlib import get_frontal_face_detector, shape_predictor
    except ImportError:
    raise
    </pre>

    • 创建面具加载服务类DynamicStreamMaskService及其对应的初始化属性:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">class DynamicStreamMaskService(object):
    """
    动态黏贴面具服务
    """
    def init(self, saved=False):
    self.saved = saved # 是否保存图片
    self.listener = True # 启动参数
    self.video_capture = cv2.VideoCapture(0) # 调用本地摄像头
    self.doing = False # 是否进行面部面具
    self.speed = 0.1 # 面具移动速度
    self.detector = get_frontal_face_detector() # 面部识别器
    self.predictor = shape_predictor("shape_predictor_68_face_landmarks.dat") # 面部分析器
    self.fps = 4 # 面具存在时间基础时间
    self.animation_time = 0 # 动画周期初始值
    self.duration = self.fps * 4 # 动画周期最大值
    self.fixed_time = 4 # 画图之后,停留时间
    self.max_width = 500 # 图像大小
    self.deal, self.text, self.cigarette = None, None, None # 面具对象
    </pre>

    • 按照上面介绍,我们先实现读取视频流转换图片的函数:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def read_data(self):
    """
    从摄像头获取视频流,并转换为一帧一帧的图像
    :return: 返回一帧一帧的图像信息
    """
    _, data = self.video_capture.read()
    return data
    </pre>

    • 接下来我们实现人脸定位函数,及眼镜和烟卷的定位:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def get_glasses_info(self, face_shape, face_width):
    """
    获取当前面部的眼镜信息
    :param face_shape:
    :param face_width:
    :return:
    """
    left_eye = face_shape[36:42]
    right_eye = face_shape[42:48]
    left_eye_center = left_eye.mean(axis=0).astype("int")
    right_eye_center = right_eye.mean(axis=0).astype("int")
    y = left_eye_center[1] - right_eye_center[1]
    x = left_eye_center[0] - right_eye_center[0]
    eye_angle = np.rad2deg(np.arctan2(y, x))
    deal = self.deal.resize(
    (face_width, int(face_width * self.deal.size[1] / self.deal.size[0])),
    resample=Image.LANCZOS)
    deal = deal.rotate(eye_angle, expand=True)
    deal = deal.transpose(Image.FLIP_TOP_BOTTOM)
    left_eye_x = left_eye[0, 0] - face_width // 4
    left_eye_y = left_eye[0, 1] - face_width // 6
    return {"image": deal, "pos": (left_eye_x, left_eye_y)}
    def get_cigarette_info(self, face_shape, face_width):
    """
    获取当前面部的烟卷信息
    :param face_shape:
    :param face_width:
    :return:
    """
    mouth = face_shape[49:68]
    mouth_center = mouth.mean(axis=0).astype("int")
    cigarette = self.cigarette.resize(
    (face_width, int(face_width * self.cigarette.size[1] / self.cigarette.size[0])),
    resample=Image.LANCZOS)
    x = mouth[0, 0] - face_width + int(16 * face_width / self.cigarette.size[0])
    y = mouth_center[1]
    return {"image": cigarette, "pos": (x, y)}
    def orientation(self, rects, img_gray):
    """
    人脸定位
    :return:
    """
    faces = []
    for rect in rects:
    face = {}
    face_shades_width = rect.right() - rect.left()
    predictor_shape = self.predictor(img_gray, rect)
    face_shape = face_utils.shape_to_np(predictor_shape)
    face['cigarette'] = self.get_cigarette_info(face_shape, face_shades_width)
    face['glasses'] = self.get_glasses_info(face_shape, face_shades_width)
    faces.append(face)
    return faces
    </pre>

    • 刚才我们提到了键盘监听事件,这里我们实现一下这个函数:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def listener_keys(self):
    """
    设置键盘监听事件
    :return:
    """
    key = cv2.waitKey(1) & 0xFF
    if key == ord("q"):
    self.listener = False
    self.console("程序退出")
    sleep(1)
    self.exit()
    if key == ord("d"):
    self.doing = not self.doing
    </pre>

    • 接下来我们来实现加载面具信息的函数:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def init_mask(self):
    """
    加载面具
    :return:
    """
    self.console("加载面具...")
    self.deal, self.text, self.cigarette = (
    Image.open(x) for x in ["images/deals.png", "images/text.png", "images/cigarette.png"]
    )
    </pre>

    • 上面基本的功能都实现了,我们该实现画图函数了,这个函数原理和之前我写的那篇用AI人脸识别技术实现抖音特效实现是一样的,这里我就不赘述了,可以去github或Python中文社区微信公众号查看。

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def drawing(self, draw_img, faces):
    """
    画图
    :param draw_img:
    :param faces:
    :return:
    """
    for face in faces:
    if self.animation_time < self.duration - self.fixed_time:
    current_x = int(face["glasses"]["pos"][0])
    current_y = int(face["glasses"]["pos"][1] * self.animation_time / (self.duration - self.fixed_time))
    draw_img.paste(face["glasses"]["image"], (current_x, current_y), face["glasses"]["image"])
    cigarette_x = int(face["cigarette"]["pos"][0])
    cigarette_y = int(face["cigarette"]["pos"][1] * self.animation_time / (self.duration - self.fixed_time))
    draw_img.paste(face["cigarette"]["image"], (cigarette_x, cigarette_y),
    face["cigarette"]["image"])
    else:
    draw_img.paste(face["glasses"]["image"], face["glasses"]["pos"], face["glasses"]["image"])
    draw_img.paste(face["cigarette"]["image"], face["cigarette"]["pos"], face["cigarette"]["image"])
    draw_img.paste(self.text, (75, draw_img.height // 2 + 128), self.text)
    </pre>

    • 既然是一个服务类,那该有启动与退出函数吧,最后我们来写一下吧。

    <bi style="box-sizing: border-box; display: block;">简单介绍一下这个start()函数, 启动后根据初始化监听信息,不断监听视频流,并将流信息通过opencv转换成图像展示出来。</bi><bi style="box-sizing: border-box; display: block;">并且调用按键监听函数,不断的监听你是否按下"d"键进行面具加载,如果监听成功,则进行图像人脸检测,并移动面具,</bi><bi style="box-sizing: border-box; display: block;">并持续一个周期的时间结束,面具此时会根据你的面部移动而移动。最终呈现文章顶部图片的效果.</bi>

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">def start(self):
    """
    启动程序
    :return:
    """
    self.console("程序启动成功.")
    self.init_mask()
    while self.listener:
    frame = self.read_data()
    frame = resize(frame, width=self.max_width)
    img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    rects = self.detector(img_gray, 0)
    faces = self.orientation(rects, img_gray)
    draw_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    if self.doing:
    self.drawing(draw_img, faces)
    self.animation_time += self.speed
    self.save_data(draw_img)
    if self.animation_time > self.duration:
    self.doing = False
    self.animation_time = 0
    else:
    frame = cv2.cvtColor(np.asarray(draw_img), cv2.COLOR_RGB2BGR)
    cv2.imshow("hello mask", frame)
    self.listener_keys()
    def exit(self):
    """
    程序退出
    :return:
    """
    self.video_capture.release()
    cv2.destroyAllWindows()
    </pre>

    • 最后,让我们试试:

    <pre spellcheck="false" style="box-sizing: border-box; margin: 5px 0px; padding: 5px 10px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 16px; line-height: inherit; font-family: inherit; vertical-align: baseline; cursor: text; counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0; background-color: rgb(240, 240, 240); border-radius: 3px; white-space: pre-wrap; color: rgb(34, 34, 34); letter-spacing: normal; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">if name == 'main':
    ms = DynamicStreamMaskService()
    ms.start()
    </pre>

    • 写到这里,这个小功能就已经实现了,大家不妨事来使用一下。
    <tt-image data-tteditor-tag="tteditorTag" contenteditable="false" class="syl1558163936258 ql-align-center" data-render-status="finished" data-syl-blot="image" style="box-sizing: border-box; cursor: text; text-align: left; color: rgb(34, 34, 34); font-family: "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei", "Helvetica Neue", Arial, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: pre-wrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: block;"> image

    <input class="pgc-img-caption-ipt" placeholder="图片描述(最多50字)" value="" style="box-sizing: border-box; outline: 0px; color: rgb(102, 102, 102); position: absolute; left: 187.5px; transform: translateX(-50%); padding: 6px 7px; max-width: 100%; width: 375px; text-align: center; cursor: text; font-size: 12px; line-height: 1.5; background-color: rgb(255, 255, 255); background-image: none; border: 0px solid rgb(217, 217, 217); border-radius: 4px; transition: all 0.2s cubic-bezier(0.645, 0.045, 0.355, 1) 0s;"></tt-image>

    相关文章

      网友评论

        本文标题:用Python获取摄像头并实时控制人脸 !

        本文链接:https://www.haomeiwen.com/subject/bxstzqtx.html