- Cousera过程挖掘3-Module1-Evaluating
- Cousera过程挖掘1-Module1-Association
- Cousera过程挖掘6-Module2-Transition
- Cousera过程挖掘5-Module2-Petri Nets
- Cousera过程挖掘4-Module2-Event Logs
- Cousera过程挖掘8-Module2-工具使用
- Cousera过程挖掘7-Module2-Alpha Algor
- Cousera过程挖掘2-Module1-Cluster Ana
- Cousera过程挖掘9-Module3-工具使用
- Learning How to Learn by UC San
1、Confusion Matrix


Precision和Recall:
我们期望这两个值越接近越好~~
2、交叉验证(Cross-Validation)
为了解决Overfitting的问题,即此时Precision的值会非常大,我们就把数据集分成训练集和测试集

为了提升数据集的利用率,我们引入K次交叉验证

网友评论