美文网首页
Hbase BulkLoad用法

Hbase BulkLoad用法

作者: kikiki5 | 来源:发表于2019-07-09 16:00 被阅读0次

    要导入大量数据,Hbase的BulkLoad是必不可少的,在导入历史数据的时候,我们一般会选择使用BulkLoad方式,我们还可以借助Spark的计算能力将数据快速地导入。

    使用方法

    1. 导入依赖包
    compile group: 'org.apache.spark', name: 'spark-sql_2.11', version: '2.3.1.3.0.0.0-1634'
    compile group: 'org.apache.spark', name: 'spark-core_2.11', version: '2.0.0.3.0.0.0-1634'
    compile group: 'org.apache.hbase', name: 'hbase-it', version: '2.0.0.3.0.0.0-1634'
    
    1. 创建好表与Family
    create 'test_log','ext'
    
    1. 编写核心代码
      BulkLoad.scala
    def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf()
          //      .setMaster("local[12]")
          .setAppName("HbaseBulkLoad")
    
        val spark = SparkSession
          .builder
          .config(sparkConf)
          .getOrCreate()
        val sc = spark.sparkContext
    
        val datas = List(//模拟200亿数据
          ("abc", ("ext", "type", "login")),
          ("ccc", ("ext", "type", "logout"))
        )
        val dataRdd = sc.parallelize(datas)
    
        val output = dataRdd.map {
          x => {
            val rowKey = Bytes.toBytes(x._1)
            val immutableRowKey = new ImmutableBytesWritable(rowKey)
    
            val colFam = x._2._1
            val colName = x._2._2
            val colValue = x._2._3
    
            val kv = new KeyValue(
              rowKey,
              Bytes.toBytes(colFam),
              Bytes.toBytes(colName),
              Bytes.toBytes(colValue.toString)
            )
            (immutableRowKey, kv)
          }
        }
    
    
        val hConf = HBaseConfiguration.create()
        hConf.addResource("hbase-site.xml")
        val hTableName = "test_log"
        hConf.set("hbase.mapreduce.hfileoutputformat.table.name", hTableName)
        val tableName = TableName.valueOf(hTableName)
        val conn = ConnectionFactory.createConnection(hConf)
        val table = conn.getTable(tableName)
        val regionLocator = conn.getRegionLocator(tableName)
    
        val hFileOutput = "/tmp/h_file"
    
        output.saveAsNewAPIHadoopFile(hFileOutput,
          classOf[ImmutableBytesWritable],
          classOf[KeyValue],
          classOf[HFileOutputFormat2],
          hConf
        )
    
        val bulkLoader = new LoadIncrementalHFiles(hConf)
        bulkLoader.doBulkLoad(new Path(hFileOutput), conn.getAdmin, table, regionLocator)
      }
    
    1. 提交Spark任务
    spark-submit --master yarn --conf spark.yarn.tokens.hbase.enabled=true --class com.dounine.hbase.BulkLoad --executor-memory 2G --num-executors 2G --driver-memory 2G    --executor-cores 2 build/libs/hbase-data-insert-1.0.0-SNAPSHOT-all.jar
    

    完整项目源码

    https://github.com/dounine/hbase-data-insert/blob/master/src/main/scala/com/dounine/hbase/BulkLoad.scala


    相关文章

      网友评论

          本文标题:Hbase BulkLoad用法

          本文链接:https://www.haomeiwen.com/subject/byaxkctx.html