美文网首页
深入理解Handler、Looper与MessageQueue之

深入理解Handler、Looper与MessageQueue之

作者: 不讲道理的魏同学 | 来源:发表于2018-09-27 20:45 被阅读0次

    如果想要弄懂Android的消息机制,就一定要深入挖掘HandlerMessageQueueLooper这三者之间的关系。

    关系图.png

    1.开启消息循环

    从一个普通的子线程开启Looper循环讲起:

    new Thread(new Runnable() {
                @Override
                public void run() {
                    Looper.prepare();
                    Handler handler = new Handler();
                    Looper.loop();
                }
            }).start();
    

    上面的代码我们分三步来研究:
    ①Looper.prepare()
    ②new Handler()
    ③Looper.loop()

    ①Looper.prepare():

    public static void prepare() {
            prepare(true);
        }
    
    private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
    
    private Looper(boolean quitAllowed) {
            mQueue = new MessageQueue(quitAllowed);
            mThread = Thread.currentThread();
        }
    

    可以看到,Looper.prepare()最终调用的是自身的构造函数,在构造函数中实例化了一个MessageQueue,并获取了当前的线程。通过将实例化的Looper放在ThreadLocal中,从而实现Looper和线程的绑定。

    下面看看new MessageQueue(quitAllowed)做了些什么

    MessageQueue(boolean quitAllowed) {
            mQuitAllowed = quitAllowed;
            mPtr = nativeInit();
        }
    

    MessageQueue在构造函数中通过native方法进行了初始化工作。

    ②new Handler():

    public Handler() {
            this(null, false);
        }
    
    public Handler(Callback callback, boolean async) {
            if (FIND_POTENTIAL_LEAKS) {
                final Class<? extends Handler> klass = getClass();
                if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                        (klass.getModifiers() & Modifier.STATIC) == 0) {
                    Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                        klass.getCanonicalName());
                }
            }
    
            mLooper = Looper.myLooper();
            if (mLooper == null) {
                throw new RuntimeException(
                    "Can't create handler inside thread that has not called Looper.prepare()");
            }
            mQueue = mLooper.mQueue;
            mCallback = callback;
            mAsynchronous = async;
        }
    

    Handler在构造函数中通过Looper.myLooper()来获取在当前线程中创建的Looper对象(所以在子线程中需要手动写Looper.prepare(),否则mLooper为null会报异常。由于主线程会自动创建smainLooper,所以在主线程中实例化的Handler无需手动创建Looper也不会报异常。关于主线程的消息机制最后会讲到)。此外,还获取了mLooper中的messageQueue对象,并将异步状态设为false。

    ③Looper.loop():

    关键的地方来了

    public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
    
                final long traceTag = me.mTraceTag;
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
                final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                final long end;
                try {
                    msg.target.dispatchMessage(msg);
                    end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
                if (slowDispatchThresholdMs > 0) {
                    final long time = end - start;
                    if (time > slowDispatchThresholdMs) {
                        Slog.w(TAG, "Dispatch took " + time + "ms on "
                                + Thread.currentThread().getName() + ", h=" +
                                msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                    }
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
        }
    

    我们可以清晰地看到,loop方法实际是执行的一个死循环
    在该循环中,MessageQueue通过调用next()来获取Message。
    如果msg==null,则跳出该循环(也意味着此消息队列结束);如果msg不为空,则会执行msg.target.dispatchMessage(msg)。这里的target是发送Message时对应的Handler(后面会讲到为什么),所以这一句代码的功能本质上是调用handler.dispatchMessage(msg),也就是将从MessageQueue中读到的Message通过Handler作分发操作。

    public void dispatchMessage(Message msg) {
            if (msg.callback != null) {
                handleCallback(msg);
            } else {
                if (mCallback != null) {
                    if (mCallback.handleMessage(msg)) {
                        return;
                    }
                }
                handleMessage(msg);
            }
        }
    

    而dispatchMessage就比较容易理解了,通过判断有无callback来选择具体的执行方法。在这里就可以看到我们平时继承Handler最常复写的方法--handleMessage(msg)

    刚才谈到了Looper.loop()的死循环中会通过MessageQueue的next()方法来获取Message,那么我们再深入去看看这个next()方法到底做了些什么。

    Message next() {
            // Return here if the message loop has already quit and been disposed.
            // This can happen if the application tries to restart a looper after quit
            // which is not supported.
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
    
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
    
                nativePollOnce(ptr, nextPollTimeoutMillis);
    
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
    
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
    
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
    
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
    
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
    
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
    
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
    
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }
    

    可以发现,next()也是个无限循环的方法,如果消息队列中没有消息,则会一直阻塞在这里。只有当msg != nullnow >= msg.when时才会return msg。其中now表示当前时间,msg.when表示插入该msg时所指定的期望处理该任务的时间。如果now < msg.when,表示当前消息还未到执行它的时间,那么就会计算时间差并进行休眠以等待执行时间到来。
    此外,mQuitting==true,则会return null,表示关闭该消息队列。

    到这里,我们基本上看完了在子线程中开启消息循环的大致流程。系统所做的无非就是实例化一个Looper并将它与当前线程绑定,然后将Handler的实例化对象与Looper进行绑定,再在Looper中无限循环地调用MessageQueue的next()方法来循环的读取Message。如果读到了Message,则会调用该Message所绑定的Handler对象来执行对应的分发和处理操作。

    2.发送消息

    发送消息抽象的解释就是通过Handler将Message放入MessageQueue中。对于发送消息这个操作,Android SDK为我们提供了多种Message构造以及Handler发送的方式。

    Message有两种常用的构造方式:new Message()handler.obtainMessage()。下面贴上源码来比较二者差别。

    以下为Handler.java的部分源码
        public final Message obtainMessage()
        {
            return Message.obtain(this);
        }
    
        public final Message obtainMessage(int what)
        {
            return Message.obtain(this, what);
        }
    
        public final Message obtainMessage(int what, Object obj)
        {
            return Message.obtain(this, what, obj);
        }
    
        public final Message obtainMessage(int what, int arg1, int arg2)
        {
            return Message.obtain(this, what, arg1, arg2);
        }
    
        public final Message obtainMessage(int what, int arg1, int arg2, Object obj)
        {
            return Message.obtain(this, what, arg1, arg2, obj);
        }
    

    可以看到handler的obtainMessage方法的多个重载主要区别在于给Message添加的参数上的不同,其内部实现还是得进入Message源码中去查看。

        private static final Object sPoolSync = new Object();
        private static Message sPool;
        private static int sPoolSize = 0;
    
        /** Constructor (but the preferred way to get a Message is to call {@link #obtain() Message.obtain()}).
        */
        public Message() {
        }
    
        public static Message obtain() {
            synchronized (sPoolSync) {
                if (sPool != null) {
                    Message m = sPool;
                    sPool = m.next;
                    m.next = null;
                    m.flags = 0; // clear in-use flag
                    sPoolSize--;
                    return m;
                }
            }
            return new Message();
        }
    
        public static Message obtain(Handler h) {
            Message m = obtain();
            m.target = h;
    
            return m;
        }
    
        public static Message obtain(Handler h, int what, Object obj) {
            Message m = obtain();
            m.target = h;
            m.what = what;
            m.obj = obj;
    
            return m;
        }
    
        public static Message obtain(Handler h, int what, int arg1, int arg2) {
            Message m = obtain();
            m.target = h;
            m.what = what;
            m.arg1 = arg1;
            m.arg2 = arg2;
    
            return m;
        }
    
        public static Message obtain(Handler h, int what,
                int arg1, int arg2, Object obj) {
            Message m = obtain();
            m.target = h;
            m.what = what;
            m.arg1 = arg1;
            m.arg2 = arg2;
            m.obj = obj;
    
            return m;
        }
    

    可以看到,Message的obtain方法的多个重载,本质上还是通过无参的obtain方法获取Message对象,然后把传入的参数设入其中。
    仔细查阅无参obtain方法的实现,我们可以发现这就是简单的单链表取链表头元素的操作。其首先进行了线程同步,即当前只有一个线程可以执行此方法。然后取出sPool这个链表头所指向的Message对象,并将sPool指向链表的下一结点,链表长度计数减一,然后返回刚刚取出的Message对象。只有当前sPool即链表头为null时才执行new Message()方法来构造Message对象。

    那么问题来了,既然Message是以链表的形式存取的,那也应该在某处对应着插入链表的操作才对。仔细想想一个Message会在什么时候回收并插入链表中呢?一定是在Message被处理完之后。那么我们再回过头去看看Looper的loop方法。

        public static void loop() {
           
            省略部分代码
            for (;;) {
    
                !!从MessageQueue中取Message!!
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                省略部分代码
                try {
                    !!调用Handler处理Message!!
                    msg.target.dispatchMessage(msg);
                    end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                } 
                省略部分代码
                !!回收Message!!
                msg.recycleUnchecked();
            }
        }
    

    可以看到,通过msg.target.dispatchMessage(msg)完成了对Message的处理,随后便调用了msg.recycleUnchecked()来对Message进行回收操作。

      void recycleUnchecked() {
            // Mark the message as in use while it remains in the recycled object pool.
            // Clear out all other details.
            flags = FLAG_IN_USE;
            what = 0;
            arg1 = 0;
            arg2 = 0;
            obj = null;
            replyTo = null;
            sendingUid = -1;
            when = 0;
            target = null;
            callback = null;
            data = null;
    
            synchronized (sPoolSync) {
                if (sPoolSize < MAX_POOL_SIZE) {
                    next = sPool;
                    sPool = this;
                    sPoolSize++;
                }
            }
        }
    

    不难看出,回收操作中先是清除Message中各类参数的信息,随后依然是通过sPoolSync这个锁进行线程同步,最后便是将当前Message对象的next指向链表头sPool,再将sPool指向当前对象,最后链表长度计数加一,即完成了一次单链表头插的操作

    小总结

    正如Message构造函数上所提到的,更倾向于通过obtain方法来获取一个Message对象而不是主动去实例化一个Message对象。因为Android程序是基于事件驱动的,事件的发送是一个高频操作。无论是系统的消息,还是自己发送的消息,如果每次都实例化一个新的Message对象,这无疑会对内存会构成较大的压力。所以Message才会采用单链表的形式在每次使用完之后进行回收,并在使用时从链表中取出来进行复用。


    下面我们再看看Handler是如何发送Message的。
    Handler发送Message主要有两种方式:sendMessage(Message msg)h和post(Runnable r)

        public final boolean post(Runnable r)
        {
           return  sendMessageDelayed(getPostMessage(r), 0);
        }
    
        public final boolean postAtTime(Runnable r, long uptimeMillis)
        {
            return sendMessageAtTime(getPostMessage(r), uptimeMillis);
        }
    
        public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
        {
            return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
        }
    
        public final boolean postDelayed(Runnable r, long delayMillis)
        {
            return sendMessageDelayed(getPostMessage(r), delayMillis);
        }
        
        //将Runnable转化成Message
        private static Message getPostMessage(Runnable r) {
            Message m = Message.obtain();
            m.callback = r;
            return m;
        }
    
        public final boolean sendMessage(Message msg)
        {
            return sendMessageDelayed(msg, 0);
        }
    
        public final boolean sendMessageDelayed(Message msg, long delayMillis)
        {
            if (delayMillis < 0) {
                delayMillis = 0;
            }
            return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
        }
    
        public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
            MessageQueue queue = mQueue;
            if (queue == null) {
                RuntimeException e = new RuntimeException(
                        this + " sendMessageAtTime() called with no mQueue");
                Log.w("Looper", e.getMessage(), e);
                return false;
            }
            return enqueueMessage(queue, msg, uptimeMillis);
        }
    
        private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
            msg.target = this;
            if (mAsynchronous) {
                msg.setAsynchronous(true);
            }
            return queue.enqueueMessage(msg, uptimeMillis);
        }
    

    从上面代码中我们能看到post(Runnable r)实际上是将Runnable设置给了Message的callback变量,然后走的还是sendMessage方法。

    而sendMessage相关的一系列操作,主要是通过延迟时长delayMillis和系统当前时间来计算该Message的预计处理时间uptimeMillis

    随后,在enqueueMessage方法中,我们可以看到msg.target = this;这样一行代码,这也印证了我们上面提到的Message中的target指的其实就是发送它的Handler。再通过queue.enqueueMessage(msg, uptimeMillis)方法,将Message插入到MessageQueue中。

    接下来我们再看看MessageQueue具体是如何将Message放进消息队列中的。

        boolean enqueueMessage(Message msg, long when) {
            if (msg.target == null) {
                throw new IllegalArgumentException("Message must have a target.");
            }
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    IllegalStateException e = new IllegalStateException(
                            msg.target + " sending message to a Handler on a dead thread");
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
    
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    

    两个关键位置:
    if (p == null || when == 0 || when < p.when)
    与这个if判断相关的三个条件分别是消息队列的头节点是否为null;传入的参数when是否为0;传入的参数when是否小于当前消息队列头节点对应的when。三者满足其一就可将传入的msg插入到消息队列的头节点处。
    for (;;)
    这个for循环当中执行的遍历链表的操作,当遍历到末尾或者when < p.when时,便将msg插入到此位置。

    看到这儿也顺带解释了一个问题:Message插入MessageQueue是顺序插入的还是基于某些原则插入的?
    答:通过比较msg的参数when的大小来插入到MessageQueue的对应位置。

    至此,Handler、MessageQueue、Looper三者的关系我们就全部梳理了一遍。


    PS:主线程的消息循环

    Android的主线程是ActivityThread,其通过在入口main()方法中调用下面几行代码来实现的消息循环:

    //省略部分代码
    Looper.prepareMainLooper();
    ActivityThread thread = new ActivityThread();
    thread.attach(false);
    if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
    }
    //省略部分代码
    Looper.loop();
    //省略部分代码
    

    与子线程相比,区别主要体现在prepareMainLooper和prepare,以及Handler的生产方式不同上。

    那么prepareMainLooper有何特殊呢?
    public static void prepareMainLooper() {
            prepare(false);
            synchronized (Looper.class) {
                if (sMainLooper != null) {
                    throw new IllegalStateException("The main Looper has already been prepared.");
                }
                sMainLooper = myLooper();
            }
        }
    

    可以看到,prepareMainLooper其实也是调用的prepare方法,只不过参数为false,表示该线程不允许退出。

    主线程上的Handler又有何区别呢?

    ActivityThread内部的handler中定义了一组消息类型,主要包含了四大组件的启动和停止等过程。handler接收到消息后会将逻辑切换到主线程去执行,这也就是主线程的消息循环模型。

    public void handleMessage(Message msg) {
            if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
            switch (msg.what) {
                case LAUNCH_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
                    final ActivityClientRecord r = (ActivityClientRecord) msg.obj;
                    r.packageInfo = getPackageInfoNoCheck(r.activityInfo.applicationInfo, r.compatInfo);
                    handleLaunchActivity(r, null);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                }
                break;
                case RELAUNCH_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
                    ActivityClientRecord r = (ActivityClientRecord) msg.obj;
                    handleRelaunchActivity(r);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                }
                break;
                case PAUSE_ACTIVITY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                    handlePauseActivity((IBinder) msg.obj, false, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 2) != 0);
                    maybeSnapshot();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case PAUSE_ACTIVITY_FINISHING:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                    handlePauseActivity((IBinder) msg.obj, true, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 1) != 0);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                ...........
            }
        }
    
    主线程上Looper一直无限循环为什么不会造成ANR?

    首先我们要明白造成ANR的原因:
    ①当前的事件没有机会得到处理(即主线程正在处理前一个事件,没有及时的完成或者looper被某种原因阻塞住了)
    ②当前的事件正在处理,但没有及时完成

    Android系统是由事件驱动的,Looper的作用就是在不断的接收事件、处理事件,如Activity的生命周期或是点击事件。Looper的无限循环正是保证了应用能持续运行。如果Looper循环结束,也代表着应用停止。

    再回到这个问题,我们可以发现,ANR正是由Looper中那些耗时的事件所造成的,从而导致Looper的消息循环无法正常进行下去。

    主线程的死循环一直运行是不是特别消耗CPU资源呢?
    其实不然,这里就涉及到Linux pipe/epoll机制,简单说就是在主线程的MessageQueue没有消息时,便阻塞在loop的queue.next()中的nativePollOnce()方法里,详情见Android消息机制1-Handler(Java层),此时主线程会释放CPU资源进入休眠状态,直到下个消息到达或者有事务发生,通过往pipe管道写端写入数据来唤醒主线程工作。这里采用的epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。 所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源。


    参考文献:

    《Android开发艺术探索》
    《深入理解Android内核设计思想》
    https://www.zhihu.com/question/34652589



    若您觉得本文章对您有用,请您为我点上一颗小心心以表支持。感谢!

    相关文章

      网友评论

          本文标题:深入理解Handler、Looper与MessageQueue之

          本文链接:https://www.haomeiwen.com/subject/byfroftx.html