美文网首页
2024-03-01

2024-03-01

作者: 做个会思考的老师 | 来源:发表于2024-02-29 23:55 被阅读0次

    一周的工作终于结束了。科组会、质量分析报告、经验分享的课件制作,每天都是赶作业的节奏,每天也都是没有任何输入的节奏,似乎很难跳出这个怪圈。想到下周的任务,已经摆在眼前的就有两大项,却还是没有一点头绪,虽然很压抑,但也要告诉自己:尝试努力去做一些改变。

    这两天学习圆柱的体积。昨天是体积公式的推导,刚上课打出课题,就有学生说我知道体积等于底面积乘高。于是,我就让他们说一说这其中的道理。结果,两个班的孩子都是从平移的角度解释来解释的。用他们的说法,就是:圆柱是由很多个底面累加形成的,是面动成体的结果。

    这种想法,在我之前的课堂上没有听到过。我想,应该是有以下两点原因:一种是这与教材的编排有关。北师版教材在学习圆柱前,先安排了一节“面的旋转”,主要就是让学生认识“点--线--面”之间的关系。有了这样的认知体验,学生对于圆柱的认识就更加全面,不仅可以卷成圆柱,还可以是旋转得到,也可以由圆形平移得到,二这样的学习经验自然就为体积公式的推导做了充分的铺垫。另一个原因可能是学生的差异而造成的,老家的孩子也许也想到了这种方法,但长期以来受“师讲生听”的学习模式影响,他们形成了不愿表达,不善表达的习惯,于是这些好方法就埋藏在孩子们的心里,无法被发现。

    今天学习圆柱体积的练习课,课堂上有两个环节处理较好:

    1.当学生回顾了圆柱体积公式的推导过程后,我及时板书:V=Sh,V=πr²,然后我问,要求圆柱的体积,必须知道几个条件?

    生:底面半径和高

    师:一定得是底面半径吗?

    生:底面积、底面直径、底面周长。

    反思:此处是否可以继续追问:说了这么多条信息,你们觉得这些信息中,哪些是可以变化的?哪些是不变的?(这样可以引导学生从直径、半径、底面周长之间的关系来理解公式,同时也让学生体会“变与不变”的思想,学会从变与不变的角度去分析和思考问题。)

    引导学生发现:与底面有关的信息可以变化,知道其中任意一个就可以,高是不变的,也就是必须要知道的信息。

    师:那知道底面半径、直径、周长,目的都是为了什么?

    生:求底面积。

    师:那你觉得要求圆柱的体积,必须知道哪几个条件?

    生:底面积和高

    师:因此,在今后遇到求圆柱的体积的问题时,要先明确目标,要找两个信息,一个是与底面有关的,一个就是高。而且,在计算时要根据信息选择合适的公式。

    2.

    生:它们的体积都是底面积乘高,所以体积相等。

    师:想一想:它们的体积为什么都可以用底面积×高来计算呢?

    生:上下两个面完全相同。

    生:它们都是由同一个面累加形成的。

    师:你认为哪种说法会更好?

    生不确定。

    师:想一想:上下两个面完全相同的图形,除了这样,还可以长什么样?

    学生马上想到“苹果核”的形状,恍然大悟。

    师:所以数学的表达是要严谨、准确。再思考下一个问题,除了这些图形,还有哪些图形可以用底面积乘高来计算体积?(如果问:还有哪些图形也可以平移形成立体图形?也许会更好)

    根据学生的回答,出示直柱体的图片。

    学生看图说一说它们的体积计算方法。

    师:想一想,它们的侧面展开会是什么样子的?如何计算侧面积?

    引导学生认识到侧面积=底面周长乘高。

    讲评作业中的第2题,学生选择,说明理由。

    最后,配一张今天课堂的板书:请忽略我的丑字。板书真的是卓越老师的杀手锏!

    相关文章

      网友评论

          本文标题:2024-03-01

          本文链接:https://www.haomeiwen.com/subject/bzaqzdtx.html