Spark - Concept:
image.pngimage.png
-
Component :
image.png -
Python vs. Scala
image.png
RDD Concept:
-
SparkContext:
image.png
-
Transform RDD's
image.png -
Example:
rdd= sc.parallelize([1,2,3,4])
squareRDD = rdd.map(lambda x:x*x)
-
Lazy evaluation:
No changes until actions been called -
Config:
image.png -
PySpark -> Worst Movie:
from pyspark import SparkConf, SparkContext
# This function just creates a Python "dictionary" we can later
# use to convert movie ID's to movie names while printing out
# the final results.
def loadMovieNames():
movieNames = {}
with open("ml-100k/u.item") as f:
for line in f:
fields = line.split('|')
movieNames[int(fields[0])] = fields[1]
return movieNames
# Take each line of u.data and convert it to (movieID, (rating, 1.0))
# This way we can then add up all the ratings for each movie, and
# the total number of ratings for each movie (which lets us compute the average)
def parseInput(line):
fields = line.split()
return (int(fields[1]), (float(fields[2]), 1.0))
if __name__ == "__main__":
# The main script - create our SparkContext
conf = SparkConf().setAppName("WorstMovies")
sc = SparkContext(conf = conf)
# Load up our movie ID -> movie name lookup table
movieNames = loadMovieNames()
# Load up the raw u.data file
lines = sc.textFile("hdfs:///user/maria_dev/ml-100k/u.data")
# Convert to (movieID, (rating, 1.0))
movieRatings = lines.map(parseInput)
# Reduce to (movieID, (sumOfRatings, totalRatings))
ratingTotalsAndCount = movieRatings.reduceByKey(lambda movie1, movie2: ( movie1[0] + movie2[0], movie1[1] + movie2[1] ) )
# Map to (rating, averageRating)
averageRatings = ratingTotalsAndCount.mapValues(lambda totalAndCount : totalAndCount[0] / totalAndCount[1])
# Sort by average rating
sortedMovies = averageRatings.sortBy(lambda x: x[1])
# Take the top 10 results
results = sortedMovies.take(10)
# Print them out:
for result in results:
print(movieNames[result[0]], result[1])
Then Submit:
spark-submit LowestRatedMovie.py
Result:
('3 Ninjas: High Noon At Mega Mountain (1998)', 1.0)
('Beyond Bedlam (1993)', 1.0)
('Power 98 (1995)', 1.0)
('Bloody Child, The (1996)', 1.0)
('Amityville: Dollhouse (1996)', 1.0)
('Babyfever (1994)', 1.0)
('Homage (1995)', 1.0)
('Somebody to Love (1994)', 1.0)
('Crude Oasis, The (1995)', 1.0)
('Every Other Weekend (1990)', 1.0)
网友评论