美文网首页
WEEK#8 Graph_Course Schedule

WEEK#8 Graph_Course Schedule

作者: DarkKnightRedoc | 来源:发表于2017-09-24 13:42 被阅读0次

    Description of the Problem

    There are a total of n courses you have to take, labeled from 0
    to n - 1
    .
    Some courses may have prerequisites, for example, to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

    Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
    For example:
    2, [[1,0]]
    There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
    2, [[1,0],[0,1]]
    There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
    Note:
    The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
    You may assume that there are no duplicate edges in the input prerequisites.


    Thinking Process

    Obviously this is a problem of detecting the existence of circle in a graph.


    TLE Solution (35 / 37 test cases passed.)

    TLE when size surpasses 2000

    class Graph {
    private:
        vector<vector<double>> RelationMatrix;
        vector<int> Vertexs;
        int size;
        vector<int> TopSort_Vertexs;
    
    public:
        Graph(int n) {
            Vertexs.resize(n);
            size = n;
            RelationMatrix.resize(n);
            for (int i = 0; i < RelationMatrix.size(); i++)
                RelationMatrix[i].resize(n);
        }
    
        void AddEdge(int vertex1, int vertex2, double length) {
            RelationMatrix[vertex1][vertex2] = length;
        }
    
        bool TopologicalSort() {
            vector<vector<double>> RM = RelationMatrix;
            while (1) {
                bool FindNothing = true;
                for (int i = 0; i < size; i++) {
                    bool flag = true;
                    for (int j = 0; j < size; j++) {
                        if (RM[j][i] == 1 || RM[0][i] == -1) {
                            flag = false;
                            break;
                        }
                    }
                    if (flag) {
                        TopSort_Vertexs.push_back(i);
                        FindNothing = false;
                        for (int k = 0; k < size; k++) 
                            if (RM[i][k] != -1)
                                RM[i][k] = 0;
                        RM[0][i] = -1; // delete i;
                    }
                }
                if (FindNothing || TopSort_Vertexs.size() == size)
                    break;
            }
            if (TopSort_Vertexs.size() == size)
                return true;
            return false;
        }
    
        void AddConnectedEdge() {
            for (int i = 0; i < Vertexs.size(); i++) {
                for (int j = 0; j < Vertexs.size(); j++) {
                    for (int k = 0; k < Vertexs.size(); k++) {
                        if (RelationMatrix[i][k] != -1 && RelationMatrix[k][j] != -1) {
                            RelationMatrix[i][j] = RelationMatrix[i][k] * RelationMatrix[k][j];
                            RelationMatrix[j][i] = 1 / (RelationMatrix[i][k] * RelationMatrix[k][j]);
                        }
                    }
                }
            }
        }
    
        void SetVertexs(string v) {
            Vertexs.resize(v.length());
        }
    
        double GetLength(int vertex1, int vertex2) {
            return RelationMatrix[vertex1][vertex2];
        }
    };
    
    class Solution {
    public:
        bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
            Graph * graph = new Graph(numCourses);
            for (auto i : prerequisites) {
                graph->AddEdge(i.second, i.first, 1);
            }
            return graph->TopologicalSort();
        }
    };
    

    Incomplete DFS Solution (quick enough but unable to handle specific cases)

    unable to detect circle in 1<-0->2->0

        bool DFS() {
            vector<bool> Visited;
            Visited.resize(RelationMatrix.size());
            while (1) {
                bool end = false;
                int CurrentVertex;
                vector<bool> CurrentlyVisiting;
                CurrentlyVisiting.clear();
                CurrentlyVisiting.resize(RelationMatrix.size());
                
                for (int i = 0; i < RelationMatrix.size(); i++) { // find a unvisited vertex
                    bool found = true;
                    if (Visited[i] == 1)
                        continue;
                    /*for (int j = 0; j < RelationMatrix.size(); j++) {
                        if (RelationMatrix[j][i] != 0) { // find a indegree = 0 vertex
                            found = false;
                            break;
                        }
                    }*/
                    if (found) {
                        Visited[i] = 1;
                        CurrentlyVisiting[i] = 1;
                        CurrentVertex = i;
                        break;
                    }
                    if (i == RelationMatrix.size() - 1) { // unvisited vertex not found, end while
                        end = true;
                        break;
                    }
                }
                if (end)
                    break;
                while (1) { // unvisited vertex found, begin DFS
                    bool whilebreak = false;
                    for (int i = 0; i < RelationMatrix.size(); i++) {
                        bool visitNext = false;
                        if (i != CurrentVertex)
                            if (RelationMatrix[CurrentVertex][i] != 0) {
                                if (CurrentlyVisiting[i] == 1) // Circle detected, return false
                                    return false;
    
                                if (Visited[i] == 0) {
                                    Visited[i] = 1;
                                    CurrentlyVisiting[i] = 1;
                                    CurrentVertex = i;
                                    visitNext = true;
                                }
                            }
                        if (visitNext)
                            break;
                        if (i == RelationMatrix.size() - 1) // can't find an unvisited vertex to go to, break to find a new vertex
                            whilebreak = true;
                    }
                    if (whilebreak)
                        break;
                }
                bool flag = false;
                for (int i = 0; i < RelationMatrix.size(); i++)
                    if (Visited[i] == false) {
                        flag = true;
                        break;
                    }
                if (flag)
                    continue;
                else
                    break; // all vertexes visited , end ;
            }
            for (int i = 0; i < Visited.size(); i++)
                if (Visited[i] == 0)
                    return false;
            return true;
        }
    

    相关文章

      网友评论

          本文标题:WEEK#8 Graph_Course Schedule

          本文链接:https://www.haomeiwen.com/subject/calkextx.html