美文网首页摄像头
单目相机标定___二、程序

单目相机标定___二、程序

作者: SIENTIST | 来源:发表于2018-09-01 02:27 被阅读0次

    相机的标定,现在基本上都是用张正友标定法,OpenCV中这些模块和函数也非常成熟。
    只要照着这个流程做下来就行了。
    当然首先要弄一个棋盘格做标定板,标定图片需要使用标定板在不同位置、不同角度、不同姿态下拍摄,最少需要3张,以10~20张为宜。






    求内参、外参、畸变系数的张正友标定法在OpenCV中非常成熟了,我在网上看了些别人的代码,都是大同小异,没什么大区别。
    这里我也转载一下别人的代码算了,亲测可用
    https://blog.csdn.net/dcrmg/article/details/52939318
    #include <opencv2/core/core.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <opencv2/calib3d/calib3d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <iostream>
    #include <fstream>
    
    using namespace cv;
    using namespace std;
    
    int main()
    {
        ifstream fin("calibdata.txt"); /* 标定所用图像文件的路径 */
        ofstream fout("caliberation_result.txt");  /* 保存标定结果的文件 */
    
        if (!fin){
            cout << "Calibration image txt read failed" << endl;
            return 0;
        }
    
        //读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化 
        cout << "开始提取角点………………";
        int image_count = 0;  /* 图像数量 */
        Size image_size;  /* 图像的尺寸 */
        Size board_size = Size(4, 6);    /* 标定板上每行、列的角点数 */
        vector<Point2f> image_points_buf;  /* 缓存每幅图像上检测到的角点 */
        vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */
        string filename;
    
        int count = -1;//用于存储角点个数。
        while (getline(fin, filename))
        {
            image_count++;
            // 用于观察检验输出
            cout << "image_count = " << image_count << endl;
            /* 输出检验*/
            cout << "-->count = " << count;
            Mat imageInput = imread(filename);
            if (image_count == 1)  //读入第一张图片时获取图像宽高信息
            {
                image_size.width = imageInput.cols;
                image_size.height = imageInput.rows;
                cout << "image_size.width = " << image_size.width << endl;
                cout << "image_size.height = " << image_size.height << endl;
            }
    
            /* 提取角点 */
            if (0 == findChessboardCorners(imageInput, board_size, image_points_buf))
            {
                cout << "can not find chessboard corners!\n"; //找不到角点
                exit(1);
            }
            else
            {
                Mat view_gray;
                cvtColor(imageInput, view_gray, CV_RGB2GRAY);
                /* 亚像素精确化 */
                find4QuadCornerSubpix(view_gray, image_points_buf, Size(5, 5)); //对粗提取的角点进行精确化
                //cornerSubPix(view_gray,image_points_buf,Size(5,5),Size(-1,-1),TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
                image_points_seq.push_back(image_points_buf);  //保存亚像素角点
                /* 在图像上显示角点位置 */
                drawChessboardCorners(view_gray, board_size, image_points_buf, false); //用于在图片中标记角点
                imshow("Camera Calibration", view_gray);//显示图片
                waitKey(500);//暂停0.5S       
            }
        }
    
        int total = image_points_seq.size();
        cout << "total = " << total << endl;
        int CornerNum = board_size.width*board_size.height;  //每张图片上总的角点数
        for (int ii = 0; ii<total; ii++)
        {
            if (0 == ii%CornerNum)// 24 是每幅图片的角点个数。此判断语句是为了输出 图片号,便于控制台观看 
            {
                int i = -1;
                i = ii / CornerNum;
                int j = i + 1;
                cout << "--> 第 " << j << "图片的数据 --> : " << endl;
            }
            if (0 == ii % 3)    // 此判断语句,格式化输出,便于控制台查看
            {
                cout << endl;
            }
            else
            {
                cout.width(10);
            }
            //输出所有的角点
            cout << " -->" << image_points_seq[ii][0].x;
            cout << " -->" << image_points_seq[ii][0].y;
        }
        cout << "角点提取完成!\n";
    
        //以下是摄像机标定
        cout << "开始标定………………";
        /*棋盘三维信息*/
        Size square_size = Size(10, 10);  /* 实际测量得到的标定板上每个棋盘格的大小 */
        vector<vector<Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
        /*内外参数*/
        Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 摄像机内参数矩阵 */
        vector<int> point_counts;  // 每幅图像中角点的数量
        Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
        vector<Mat> tvecsMat;  /* 每幅图像的旋转向量 */
        vector<Mat> rvecsMat; /* 每幅图像的平移向量 */
        /* 初始化标定板上角点的三维坐标 */
        int i, j, t;
        for (t = 0; t<image_count; t++)
        {
            vector<Point3f> tempPointSet;
            for (i = 0; i<board_size.height; i++)
            {
                for (j = 0; j<board_size.width; j++)
                {
                    Point3f realPoint;
                    /* 假设标定板放在世界坐标系中z=0的平面上 */
                    realPoint.x = i*square_size.width;
                    realPoint.y = j*square_size.height;
                    realPoint.z = 0;
                    tempPointSet.push_back(realPoint);
                }
            }
            object_points.push_back(tempPointSet);
        }
        /* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
        for (i = 0; i<image_count; i++)
        {
            point_counts.push_back(board_size.width*board_size.height);
        }
        /* 开始标定 */
        calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0);
        cout << "标定完成!\n";
        //对标定结果进行评价
        cout << "开始评价标定结果………………\n";
        double total_err = 0.0; /* 所有图像的平均误差的总和 */
        double err = 0.0; /* 每幅图像的平均误差 */
        vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */
        cout << "\t每幅图像的标定误差:\n";
        fout << "每幅图像的标定误差:\n";
        for (i = 0; i<image_count; i++)
        {
            vector<Point3f> tempPointSet = object_points[i];
            /* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
            projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);
            /* 计算新的投影点和旧的投影点之间的误差*/
            vector<Point2f> tempImagePoint = image_points_seq[i];
            Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
            Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);
            for (int j = 0; j < tempImagePoint.size(); j++)
            {
                image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
                tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
            }
            err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
            total_err += err /= point_counts[i];
            std::cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
            fout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
        }
        std::cout << "总体平均误差:" << total_err / image_count << "像素" << endl;
        fout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
        std::cout << "评价完成!" << endl;
        //保存定标结果    
        std::cout << "开始保存定标结果………………" << endl;
        Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
        fout << "相机内参数矩阵:" << endl;
        fout << cameraMatrix << endl << endl;
        fout << "畸变系数:\n";
        fout << distCoeffs << endl << endl << endl;
        for (int i = 0; i<image_count; i++)
        {
            fout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
            fout << rvecsMat[i] << endl;
            /* 将旋转向量转换为相对应的旋转矩阵 */
            Rodrigues(rvecsMat[i], rotation_matrix); 
            fout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
            fout << rotation_matrix << endl;
            fout << "第" << i + 1 << "幅图像的平移向量:" << endl;
            fout << tvecsMat[i] << endl << endl;
        }
        std::cout << "完成保存" << endl;
        fout << endl;
        /************************************************************************
        显示定标结果
        *************************************************************************/
        Mat mapx = Mat(image_size, CV_32FC1);
        Mat mapy = Mat(image_size, CV_32FC1);
        Mat R = Mat::eye(3, 3, CV_32F);
        std::cout << "保存矫正图像" << endl;
        string imageFileName;
        std::stringstream StrStm;
        for (int i = 0; i != image_count; i++)
        {
            std::cout << "Frame #" << i + 1 << "..." << endl;
            initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cameraMatrix, image_size, CV_32FC1, mapx, mapy);
            StrStm.clear();
            imageFileName.clear();
            string filePath = "chess";
            StrStm << i + 1;
            StrStm >> imageFileName;
            filePath += imageFileName;
            filePath += ".bmp";
            Mat imageSource = imread(filePath);
            Mat newimage = imageSource.clone();
            //另一种不需要转换矩阵的方式
            //undistort(imageSource,newimage,cameraMatrix,distCoeffs);
            remap(imageSource, newimage, mapx, mapy, INTER_LINEAR);
            StrStm.clear();
            filePath.clear();
            StrStm << i + 1;
            StrStm >> imageFileName;
            imageFileName += "_d.jpg";
            imwrite(imageFileName, newimage);
        }
        std::cout << "保存结束" << endl;
    
    
        return 0 ;
    }
    

    相关文章

      网友评论

        本文标题:单目相机标定___二、程序

        本文链接:https://www.haomeiwen.com/subject/cdrywftx.html