一、图(Graph)的概念:
图的样子如下:
图长这样的,不要怀疑图由顶点集V(G)和边集E(G)组成,记为G=(V,E)。其中E(G)是边的有限集合,边是顶点的无序对(无向图)或有序对(有向图)。
对有向图来说,E(G)是有向边(也称弧(Arc))的有限集合,弧是顶点的有序对,记为<v,w>,v、w是顶点,v为弧尾(箭头根部),w为弧头(箭头处)。
对无向图来说,E(G)是边的有限集合,边是顶点的无序对,记为(v, w)或者(w, v),并且(v, w)=(w,v)。
二、图的术语
顶点(Vertex):图中的数据元素。线性表中我们把数据元素叫元素,树中将数据元素叫结点。
顶点v的度:与v相关联的边的数目;
顶点v的出度:以v为起点有向边数;
顶点v的入度:以v为终点有向边数。
边:顶点之间的逻辑关系用边来表示,边集可以是空的。
无向边(Edge):若顶点V1到V2之间的边没有方向,则称这条边为无向边。
无向图(Undirected graphs):图中任意两个顶点之间的边都是无向边。(A,D)=(D,A)
有向边:若从顶点V1到V2的边有方向,则称这条边为有向边,也称弧(Arc)。用<V1,V2>表示,V1为狐尾(Tail),V2为弧头(Head)。(V1,V2)≠(V2,V1)。
有向图(Directed graphs):图中任意两个顶点之间的边都是有向边。
注意:无向边用“()”,而有向边用“< >”表示。
简单图:图中不存在顶点到其自身的边,且同一条边不重复出现。
无向完全图:无向图中,任意两个顶点之间都存在边。
有向完全图:有向图中,任意两个顶点之间都存在方向互为相反的两条弧。
稀疏图:有很少条边。
稠密图:有很多条边。
权(Weight):与图的边或弧相关的数。
网(Network):带权的图。
子图(Subgraph):假设G=(V,{E})和G‘=(V',{E'}),如果V'包含于V且E'包含于E,则称G'为G的子图。
度(Degree):无向图中,与顶点V相关联的边的数目。有向图中,入度表示指向自己的边的数目,出度表示指向其他边的数目,该顶点的度等于入度与出度的和。
简单路径:序列中顶点不重复出现的路径
简单回路:序列中第一个顶点和最后一个顶点相同的路径
路径的长度:一条路径上边或弧的数量。
连通图:图中任意两个顶点都是连通的。
极大连通子图:该子图是G连通子图,将G的任何不在该子图的顶点加入,子图将不再连通。
极小连通子图:该子图是G的连通子图,在该子图中删除任何一条边,子图都将不再连通。
无向图G的极大连通子图称为G的连通分量。
有向图D的极大强连通子图称为D的强连通分量。
包含无向图G的所有顶点的极小连通子图称为G的生成树。
若T是G的生成树当且仅当T满足:T是G的连通子图、T包含G的所有顶点、T中无回路。
网友评论