美文网首页
【redis】redis变慢排查思路

【redis】redis变慢排查思路

作者: Y了个J | 来源:发表于2020-10-22 14:18 被阅读0次

Redis作为内存数据库,拥有非常高的性能,单个实例的QPS能够达到10W左右。但我们在使用Redis时,经常时不时会出现访问延迟很大的情况,如果你不知道Redis的内部实现原理,在排查问题时就会一头雾水。

很多时候,Redis出现访问延迟变大,都与我们的使用不当或运维不合理导致的。
这篇文章我们就来分析一下Redis在使用过程中,经常会遇到的延迟问题以及如何定位和分析。

慢日志查询

1、首先,第一步,建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能,我们通过以下设置,就可以查看有哪些命令在执行时延迟比较大。
首先设置Redis的慢日志阈值,只有超过阈值的命令才会被记录,这里的单位是微妙,例如设置慢日志的阈值为5毫秒,同时设置只保留最近 1000 条慢日志记录:

# 命令执行超过5毫秒记录慢日志
CONFIG SET slowlog-log-slower-than 5000
# 只保留最近1000条慢日志
CONFIG SET slowlog-max-len 1000

设置完成之后,所有执行的命令如果延迟大于5毫秒,都会被Redis记录下来,我们执行SLOWLOG get 5查询最近5条慢日志:

127.0.0.1:6379> SLOWLOG get 5
1) 1) (integer) 32693       # 慢日志ID
   2) (integer) 1593763337  # 执行时间
   3) (integer) 5299        # 执行耗时(微妙)
   4) 1) "LRANGE"           # 具体执行的命令和参数
      2) "user_list_2000"
      3) "0"
      4) "-1"
2) 1) (integer) 32692
   2) (integer) 1593763337
   3) (integer) 5044
   4) 1) "GET"
      2) "book_price_1000"

通过查看慢日志记录,我们就可以知道在什么时间执行哪些命令比较耗时,如果你的业务经常使用O(n)以上复杂度的命令,例如sort、sunion、zunionstore,或者在执行O(n)命令时操作的数据量比较大,这些情况下Redis处理数据时就会很耗时。

如果你的服务请求量并不大,但Redis实例的CPU使用率很高,很有可能是使用了复杂度高的命令导致的。
解决方案:就是,不使用这些复杂度较高的命令,并且一次不要获取太多的数据,每次尽量操作少量的数据,让Redis可以及时处理返回。

大key

如果查询慢日志发现,并不是复杂度较高的命令导致的,例如都是SET、DELETE操作出现在慢日志记录中,那么你就要怀疑是否存在Redis写入了大key的情况。
如果一个key写入的数据非常大,Redis在分配内存时也会比较耗时。同样的,当删除这个key的数据时,释放内存也会耗时比较久。
Redis也提供了扫描大key的方法:

redis-cli -h $host -p $port --bigkeys -i 0.01

需要注意的是当我们在线上实例进行大key扫描时,Redis的QPS会突增,为了降低扫描过程中对Redis的影响,我们需要控制扫描的频率,使用-i参数控制即可,它表示扫描过程中每次扫描的时间间隔,单位是秒。

集中过期

有时你会发现,平时在使用Redis时没有延时比较大的情况,但在某个时间点突然出现一波延时,而且报慢的时间点很有规律,例如某个整点,或者间隔多久就会发生一次。
如果出现这种情况,就需要考虑是否存在大量key集中过期的情况。

Redis的过期策略采用主动过期+懒惰过期两种策略:
主动过期:Redis内部维护一个定时任务,默认每隔100毫秒会从过期字典中随机取出20个key,删除过期的key,如果过期key的比例超过了25%,则继续获取20个key,删除过期的key,循环往复,直到过期key的比例下降到25%或者这次任务的执行耗时超过了25毫秒,才会退出循环
懒惰过期:只有当访问某个key时,才判断这个key是否已过期,如果已经过期,则从实例中删除

解决方案是,在集中过期时增加一个随机时间,把这些需要过期的key的时间打散即可。
伪代码可以这么写:

# 在过期时间点之后的5分钟内随机过期掉
redis.expireat(key, expire_time + random(300))

这样Redis在处理过期时,不会因为集中删除key导致压力过大,阻塞主线程。

内存达到上限

有时我们把Redis当做纯缓存使用,就会给实例设置一个内存上限maxmemory,然后开启LRU淘汰策略。
当实例的内存达到了maxmemory后,你会发现之后的每次写入新的数据,有可能变慢了。
导致变慢的原因是,当Redis内存达到maxmemory后,每次写入新的数据之前,必须先踢出一部分数据,让内存维持在maxmemory之下。
这个踢出旧数据的逻辑也是需要消耗时间的,而具体耗时的长短,要取决于配置的淘汰策略:

allkeys-lru:不管key是否设置了过期,淘汰最近最少访问的key
volatile-lru:只淘汰最近最少访问并设置过期的key
allkeys-random:不管key是否设置了过期,随机淘汰
volatile-random:只随机淘汰有设置过期的key
allkeys-ttl:不管key是否设置了过期,淘汰即将过期的key
noeviction:不淘汰任何key,满容后再写入直接报错
allkeys-lfu:不管key是否设置了过期,淘汰访问频率最低的key(4.0+支持)
volatile-lfu:只淘汰访问频率最低的过期key(4.0+支持)
具体使用哪种策略,需要根据业务场景来决定。

fork耗时严重

要想避免这种情况,我们需要规划好数据备份的周期,建议在从节点上执行备份,而且最好放在低峰期执行。如果对于丢失数据不敏感的业务,那么不建议开启AOF和AOF重写功能。

网卡负载过高

之前我们就遇到这种问题,特点就是从某个时间点之后就开始变慢,并且一直持续。这时你需要检查一下机器的网卡流量,是否存在网卡流量被跑满的情况。

网卡负载过高,在网络层和TCP层就会出现数据发送延迟、数据丢包等情况。Redis的高性能除了内存之外,就在于网络IO,请求量突增会导致网卡负载变高。

如果出现这种情况,你需要排查这个机器上的哪个Redis实例的流量过大占满了网络带宽,然后确认流量突增是否属于业务正常情况,如果属于那就需要及时扩容或迁移实例,避免这个机器的其他实例受到影响。

运维层面,我们需要对机器的各项指标增加监控,包括网络流量,在达到阈值时提前报警,及时与业务确认并扩容。

总结

以上我们总结了Redis中常见的可能导致延迟增大甚至阻塞的场景,这其中既涉及到了业务的使用问题,也涉及到Redis的运维问题。

可见,要想保证Redis高性能的运行,其中涉及到CPU、内存、网络,甚至磁盘的方方面面,其中还包括操作系统的相关特性的使用。

作为开发人员,我们需要了解Redis的运行机制,例如各个命令的执行时间复杂度、数据过期策略、数据淘汰策略等,使用合理的命令,并结合业务场景进行优化。

作为DBA运维人员,需要了解数据持久化、操作系统fork原理、Swap机制等,并对Redis的容量进行合理规划,预留足够的机器资源,对机器做好完善的监控,才能保证Redis的稳定运行。

参考
https://yq.aliyun.com/articles/73894?spm=a2c4e.11153940.0.0.2967407a9XO36B
https://yq.aliyun.com/articles/531067#cc2

相关文章

网友评论

      本文标题:【redis】redis变慢排查思路

      本文链接:https://www.haomeiwen.com/subject/cgoxtktx.html