美文网首页
2019-03-10

2019-03-10

作者: 树生1995 | 来源:发表于2019-03-10 10:21 被阅读0次
    ; 变量定义
    (define pi (* 4 (atan 1 .0)))
    
    ; 方法定义
    (define (sum-gp a0 r n)
     (* a0
      (if (= r 1)
       n
       (/ (- 1 (expt r n)) (- 1 r)))))
    
    ; if用法
    (define (abs n)
     (if (< n 0)
      (- 0 n)
      n))
    
    ; cond条件用法
    (define (trans grade)
     (cond
      ((>= grade 80) "A")
      ((<= 60 grade 79) "B")
      ((<= 40 grade 59) "C")
      (else "D")))
    
    ; 递归阶乘
    (define (fact n)
     (if (= n 1)
      1
      (* n (fact (- n 1)))))
    
    ; 递归表中所有元素翻倍
    (define (list*2 ls)
     (if (null? ls)
      '()
      (cons (* 2 (car ls))
       (list*2 (cdr ls)))))
    
    ; 递归统计列表长度
    (define (my-length ls)
     (if (null? ls)
      0
      (+ (my-length (cdr ls)) 1)))
    
    ;递归求表元素之和
    (define (list-sum ls)
     (if (null? ls)
      0
      (+ (list-sum (cdr ls)) (car ls))))
    
    ; 递归删除指定元素
    (define (list-remove ls x)
     (if (null? ls)
      '()
      (if (eqv? (car ls) x)
       (list-remove (cdr ls) x)
       (cons (car ls) (list-remove (cdr ls) x)))))
    
    ; 递归获取元素在列表中第一次出现的位置
    (define (position x ls)
     (position-aux x ls 0))
    
    (define (position-aux x ls i)
     (cond
      ((null? ls) #f)
      ((eqv? x (car ls)) i)
      (else (position-aux x (cdr ls) (+ i 1)))))
    
    
    ; 尾递归反转列表
    (define (list-revert ls)
     (letrec ((iter (lambda (ls0 ls1)
                     (if (null? ls0)
                      ls1
                      (iter (cdr ls0) (cons (car ls0) ls1))))))
      (iter ls ())))
    
    ; 尾递归求数值列表和
    (define (list-sum-tail ls)
     (letrec ((iter (lambda (ls0 n)
                     (if (null? ls0)
                      n
                      (iter (cdr ls0) (+ (car ls0) n))))))
      (iter ls 0)))
    
    ; 尾递归计算阶乘
    (define (fact-tail n)
     (fact-rec n n))
    
    (define (fact-rec n p)
     (if (= n 1)
      p
      (let ((m (- n 1)))
       (fact-rec m (* p m)))))
    

    相关文章

      网友评论

          本文标题:2019-03-10

          本文链接:https://www.haomeiwen.com/subject/cgqupqtx.html