美文网首页高并发
并发编程-Thread源码解析及状态分析

并发编程-Thread源码解析及状态分析

作者: yufw | 来源:发表于2020-04-16 10:03 被阅读0次

Thread源码解析

构造函数源码解析:

Thread类对外开放的 public 构造
public Thread() {
    this((ThreadGroup)null, (Runnable)null, "Thread-" + nextThreadNum(), 0L);
}

public Thread(Runnable target) {
    this((ThreadGroup)null, target, "Thread-" + nextThreadNum(), 0L);
}

Thread(Runnable target, AccessControlContext acc) {
    this((ThreadGroup)null, target, "Thread-" + nextThreadNum(), 0L, acc, false);
}

public Thread(ThreadGroup group, Runnable target) {
    this(group, target, "Thread-" + nextThreadNum(), 0L);
}

public Thread(String name) {
    this((ThreadGroup)null, (Runnable)null, name, 0L);
}

public Thread(ThreadGroup group, String name) {
    this(group, (Runnable)null, name, 0L);
}

public Thread(Runnable target, String name) {
    this((ThreadGroup)null, target, name, 0L);
}

public Thread(ThreadGroup group, Runnable target, String name) {
    this(group, target, name, 0L);
}

public Thread(ThreadGroup group, Runnable target, String name, long stackSize) {
    this(group, target, name, stackSize, (AccessControlContext)null, true);
}
/**
* @param g 指定此线程属于线程组
* @param target runnable 对象
* @param name 线程名
* @param stackSize 最大线程栈 大小
* @param inheritThreadLocals 是否继承 父线程的 threadlocal 属性值
*/
public Thread(ThreadGroup group, Runnable target, String name, long stackSize, boolean inheritThreadLocals) {
    this(group, target, name, stackSize, (AccessControlContext)null, inheritThreadLocals);
}
私有 构造
/**
* @param g 指定此线程属于线程组
* @param target runnable 对象
* @param name 线程名
* @param stackSize 最大线程栈 大小
* @param acc
* @param inheritThreadLocals
*/
private Thread(ThreadGroup g, Runnable target, String name, long stackSize, AccessControlContext acc, boolean inheritThreadLocals) {
    this.daemon = false;
    this.stillborn = false;
    this.threadLocals = null;
    this.inheritableThreadLocals = null;
    this.blockerLock = new Object();
    // 所有的线程必须有名字 
    if (name == null) {
        throw new NullPointerException("name cannot be null");
    } else {
        this.name = name;
        Thread parent = currentThread();
        SecurityManager security = System.getSecurityManager();
        if (g == null) {
            // 如果线程组为 null
            // 1 首先从 当前安全管理器中 获取 线程组
            if (security != null) {
                g = security.getThreadGroup();
            }

            // 2 如果 仍没有 线程组  
            // 从 当前线程(很大可能 mian 线程) 获取 线程组
            if (g == null) {
                g = parent.getThreadGroup();
            }
        }

        // 线程组校验
        g.checkAccess();
        if (security != null && isCCLOverridden(this.getClass())) {
            security.checkPermission(SecurityConstants.SUBCLASS_IMPLEMENTATION_PERMISSION);
        }

        // 线程组 添加未开始的 线程数
        g.addUnstarted();
        this.group = g;
        // 线程是否是守护线程 和 优先级 都有继承性
        this.daemon = parent.isDaemon();
        this.priority = parent.getPriority();
        if (security != null && !isCCLOverridden(parent.getClass())) {
            this.contextClassLoader = parent.contextClassLoader;
        } else {
            this.contextClassLoader = parent.getContextClassLoader();
        }

        this.inheritedAccessControlContext = acc != null ? acc : AccessController.getContext();
        this.target = target;
        this.setPriority(this.priority);
        if (inheritThreadLocals && parent.inheritableThreadLocals != null) {
            //InheritableThreadLocal主要用于子线程创建时,自动继承父线程的ThreadLocal变量,方便必要信息的进一步传递。
            this.inheritableThreadLocals = ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
        }

        this.stackSize = stackSize;
        this.tid = nextThreadID();
    }
}
线程默认名称
private static int threadInitNumber;

private static synchronized int nextThreadNum() {
    return threadInitNumber++;
}

线程状态

/** Thread 类 内部 枚举
* 线程状态一共有 6 种
*/
public static enum State {
    NEW,
    RUNNABLE,
    BLOCKED,
    WAITING,
    TIMED_WAITING,
    TERMINATED;

    private State() {
    }
}
线程状态图
thread状态.png

线程实例方法源码解析

start()
Description

​ Causes this thread to begin execution; the Java Virtual Machine calls the run method of this thread.

Code
/**
*/
public synchronized void start() {
    if (this.threadStatus != 0) {
        throw new IllegalThreadStateException();
    } else {
        // 往线程组中添加 该线程
        this.group.add(this);
        boolean started = false;

        try {
            // 线程开始 是 native 方法
            this.start0();
            started = true;
        } finally {
            try {
                // 如果 线程启动失败 从 该 线程组中 remove 掉 此线程
                if (!started) {
                    this.group.threadStartFailed(this);
                }
            } catch (Throwable var8) {
            }

        }

    }
}

private native void start0();
run()
Description

​ If this thread was constructed using a separate Runnable run object, then that Runnable object's run method is called; otherwise, this method does nothing and returns.

Code
/**
*/
public void run() {
    // 直接调用 runnable 中的 run() 方法体的逻辑
    if (this.target != null) {
        this.target.run();
    }
}
interrupt()
Description

​ Interrupts this thread.

Code
/**
* 添加 中断标识
* interrupt() 方法只是改变中断状态而已,它不会中断一个正在运行的线程
* 如果线程被Object.wait, Thread.join和Thread.sleep三种方法之一阻塞,此时调用该线程的interrupt()方
* 法,那么该线程将抛出一个 InterruptedException中断异常(该线程必须事先预备好处理此异常)从而提早地终结
* 被阻塞状态
*/
public void interrupt() {
    if (this != currentThread()) {
        // Determines if the currently running thread has permission to modify this thread.
        // 校验 是否有权限 线程修改
        this.checkAccess();
        synchronized(this.blockerLock) {
            Interruptible b = this.blocker;
            if (b != null) {
                this.interrupt0();
                b.interrupt(this);
                return;
            }
        }
    }
    this.interrupt0();
}
setPriority(int newPriority)
/**
* 设置线程优先级  
* newPriority 越大  优先级越高
*/
public final void setPriority(int newPriority) {
    // 校验 你是否有权限 线程修改
    this.checkAccess();
    // 线程优先级 区间[1,10]
    if (newPriority <= 10 && newPriority >= 1) {
        ThreadGroup g;
        if ((g = this.getThreadGroup()) != null) {
            // 调整 线程优先级 最大 不超过 所在线程组的最大值(默认10 可能小于10)
            if (newPriority > g.getMaxPriority()) {
                newPriority = g.getMaxPriority();
            }

            this.setPriority0(this.priority = newPriority);
        }

    } else {
        throw new IllegalArgumentException();
    }
}
getPriority()
/**
* 获取线程优先级
**/
public final int getPriority() {
    return this.priority;
}
join()
Description

​ Waits for this thread to die.

Code
/**
* 让线程进入 waiting 状态
* 如果 millis == 0L 线程进入 waiting
* 如果 millis > 0L 线程进入 timed waiting
**/
public final synchronized void join(long millis) throws InterruptedException {
    long base = System.currentTimeMillis();
    long now = 0L;
    if (millis < 0L) {
        throw new IllegalArgumentException("timeout value is negative");
    } else {
        if (millis == 0L) {
            while(this.isAlive()) {
                this.wait(0L);
            }
        } else {
            while(this.isAlive()) {
                long delay = millis - now;
                if (delay <= 0L) {
                    break;
                }
                // 使用wait 方法 所以 会 释放 cpu占用
                this.wait(delay);
                now = System.currentTimeMillis() - base;
            }
        }

    }
}
// 等待这个线程死亡的时间最多是毫秒 加 纳秒。
public final synchronized void join(long millis, int nanos) throws InterruptedException {
    if (millis < 0L) {
        throw new IllegalArgumentException("timeout value is negative");
    } else if (nanos >= 0 && nanos <= 999999) {
        if (nanos >= 500000 || nanos != 0 && millis == 0L) {
            ++millis;
        }

        this.join(millis);
    } else {
        throw new IllegalArgumentException("nanosecond timeout value out of range");
    }
}

public final void join() throws InterruptedException {
    this.join(0L);
}

线程static方法

sleep(long var0)
Description

​ Causes the currently executing thread to sleep (temporarily cease execution) for the specified number of milliseconds, subject to the precision and accuracy of system timers and schedulers.

Code
// 线程 进入 waitting timed 状态 
// 不会释放cpu 资源(这是和 wait 和 join 很大 区别)
public static native void sleep(long var0) throws InterruptedException;

public static void sleep(long millis, int nanos) throws InterruptedException {
    if (millis < 0L) {
        throw new IllegalArgumentException("timeout value is negative");
    } else if (nanos >= 0 && nanos <= 999999) {
        if (nanos >= 500000 || nanos != 0 && millis == 0L) {
            ++millis;
        }
        sleep(millis);
    } else {
        throw new IllegalArgumentException("nanosecond timeout value out of range");
    }
}
yield()
Description

​ A hint to the scheduler that the current thread is willing to yield its current use of a processor.

Code
/**
* Java线程中的Thread.yield( )方法,译为线程让步。顾名思义,就是说当一个线程使用了这个方法之后,它就会把自* 己CPU执行的时间让掉,让自己或者其它的线程运行,注意是让自己或者其他线程运行,并不是单纯的让给其他线程
* 
* example 小朋友们 一起抢一个球 现在被我抢到了,我突然大喊“我把球重新丢出去,谁先抢到是谁的”(注意是我
* 们,包含自己),然后大家重新进入抢球大战
* 与wait 区别是  wait  让出 cpu资源 自己不在加入 抢资源的 大军
*/
public static native void yield();

相关文章

网友评论

    本文标题:并发编程-Thread源码解析及状态分析

    本文链接:https://www.haomeiwen.com/subject/chblvhtx.html