Spark源码之BlockManager篇
BlockManage作为对外提供的统一访问block的接口,而且它在spark中是以Master-Slave的模式存在,既然它在spark中承担着数据管理的大任,那么此篇就详细的探讨下BlockManager;
BlockManager的生成,以及组织架构的形成
BlockManager是在SparkEnv构建的时候生成的,我们打开SparkEnv的源码,可以看到先实例化出BlockManagerMaster以及BlockManagerMaster的消息通讯体BlockManagerMasterEndpoint,在实例化出BlockManagerMaster后开始创建BlockManager,因为BlockManager在spark中是以Master-Slave的形式存在的,那么它的slava又是在哪里分布的呢?
//todo 创建blockTransferService
val blockTransferService = new NettyBlockTransferService(conf, securityManager, numUsableCores)
//todo 创建BlockManagerMaster,并且实例化出BlockManagerMasterEndpoint
val blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(
BlockManagerMaster.DRIVER_ENDPOINT_NAME,
new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),
conf, isDriver)
// NB: blockManager is not valid until initialize() is called later.
//todo 根据Executor创建出BlockManager
val blockManager = new BlockManager(executorId, rpcEnv, blockManagerMaster,
serializer, conf, memoryManager, mapOutputTracker, shuffleManager,
blockTransferService, securityManager, numUsableCores)
我们在打开我们的ExecutorBackEnd代码,可以看到在实例化CoarseGrainedExecutorBackend实例的时候传入了一个SparkEnv,其实在每个ExecutorBackend中都会分布一个BlockManager,并以slave的形式存在,这里调用SparkEnv.createExecutorEnv(......)
方法,将ExecutorBackend的executorid传入进入,而在SparkEnv的createExecutorEnv方法中创建BlockManager时,是根据传入的executorId创建的,而在BlockManager中会实例化出BlockManagerSlaveEndpoint实例,和BlockManagerMaster能够建立通讯,这就形成了BlockManager的通讯结构;
//todo 创建基于当前Executor的SparkEnv
val env = SparkEnv.createExecutorEnv(
driverConf, executorId, hostname, port, cores, isLocal = false)
// SparkEnv will set spark.executor.port if the rpc env is listening for incoming
// connections (e.g., if it's using akka). Otherwise, the executor is running in
// client mode only, and does not accept incoming connections.
val sparkHostPort = env.conf.getOption("spark.executor.port").map { port =>
hostname + ":" + port
}.orNull
env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
env.rpcEnv, driverUrl, executorId, sparkHostPort, cores, userClassPath, env))
//todo 在BlockManager中会实例化出BlockManagerSlaveEndpoint实例
private val slaveEndpoint = rpcEnv.setupEndpoint(
"BlockManagerEndpoint" + BlockManager.ID_GENERATOR.next,
new BlockManagerSlaveEndpoint(rpcEnv, this, mapOutputTracker))
BlockManager的注册
我们再来看下BlockManager是如何向BlockManagerMaster注册的,在BlockManager实例化后调用initialize方法,在此方法内执行了BlockManagerMaster.registerBlockManager方法;
//blockManager的initialize方法
def initialize(appId: String): Unit = {
blockTransferService.init(this)
shuffleClient.init(appId)
blockManagerId = BlockManagerId(
executorId, blockTransferService.hostName, blockTransferService.port)
shuffleServerId = if (externalShuffleServiceEnabled) {
logInfo(s"external shuffle service port = $externalShuffleServicePort")
BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
} else {
blockManagerId
}
master.registerBlockManager(blockManagerId, maxMemory, slaveEndpoint)
// Register Executors' configuration with the local shuffle service, if one should exist.
if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
registerWithExternalShuffleServer()
}
进入BlockManagerMaster的registerBlockManager方法,可以看到它向master endpoint发送消息,其实这里的Driver就是BlockManagerMasterEndpoint
/** Register the BlockManager's id with the driver. */
def registerBlockManager(
blockManagerId: BlockManagerId, maxMemSize: Long, slaveEndpoint: RpcEndpointRef): Unit = {
logInfo("Trying to register BlockManager")
tell(RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint))
logInfo("Registered BlockManager")
}
/** Send a one-way message to the master endpoint, to which we expect it to reply with true. */
private def tell(message: Any) {
if (!driverEndpoint.askWithRetry[Boolean](message)) {
throw new SparkException("BlockManagerMasterEndpoint returned false, expected true.")
}
}
我们再进入BlockManagerMasterEndpoint中,可以看到这里接收到BlockManager的注册,然后调用register方法;
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) =>
register(blockManagerId, maxMemSize, slaveEndpoint)
context.reply(true)
进入register方法中会看到有一个blockManagerInfo数据结构,这个数据结构存储所有slave注册的BlockManager信息;到这里ExecutorBackend中的BlockManager信息向Driver(BlockManagerMasterEndpoint)注册完毕;Driver端会维护所有ExecutorBackend上的BlockManager信息;
private def register(id: BlockManagerId, maxMemSize: Long, slaveEndpoint: RpcEndpointR
val time = System.currentTimeMillis()
if (!blockManagerInfo.contains(id)) {
blockManagerIdByExecutor.get(id.executorId) match {
case Some(oldId) =>
// A block manager of the same executor already exists, so remove it (assumed
logError("Got two different block manager registrations on same executor - "
+ s" will replace old one $oldId with new one $id")
removeExecutor(id.executorId)
case None =>
}
logInfo("Registering block manager %s with %s RAM, %s".format(
id.hostPort, Utils.bytesToString(maxMemSize), id))
blockManagerIdByExecutor(id.executorId) = id
blockManagerInfo(id) = new BlockManagerInfo(
id, System.currentTimeMillis(), maxMemSize, slaveEndpoint)
}
listenerBus.post(SparkListenerBlockManagerAdded(time, id, maxMemSize))
}
BlockManager的内部工作
BlockManager之block信息上报:
1.在BlockManager中的reportAllBlocks方法,遍历所有的的blockInfo准备上报给Master;
2.接着进入tryToReportBlockStatus方法,在该方法中调用BlockManagerMaster的updateBlockInfo方法;
3.在BlockManager的updateBlockInfo方法中可以看到向driverEndpoint发送UpdateBlockInfo消息;
4.UpdateBlockInfo收到UpdateBlockInfo消息,然后再进一步调用自身内部的UpdateBlockInfo操作,具体方法这里不再叙述,主要是去更改维护driverEndpoint中的blockManagerInfo信息;
参照如下代码:
//1.blockManager中的reportAllBlocks方法
private def reportAllBlocks(): Unit = {
logInfo(s"Reporting ${blockInfo.size} blocks to the master.")
for ((blockId, info) <- blockInfo) {
val status = getCurrentBlockStatus(blockId, info)
if (!tryToReportBlockStatus(blockId, info, status)) {
logError(s"Failed to report $blockId to master; giving up.")
return
}
}
}
//2.blockManager中的tryToReportBlockStatus方法
private def tryToReportBlockStatus(
blockId: BlockId,
info: BlockInfo,
status: BlockStatus,
droppedMemorySize: Long = 0L): Boolean = {
if (info.tellMaster) {
val storageLevel = status.storageLevel
val inMemSize = Math.max(status.memSize, droppedMemorySize)
val inExternalBlockStoreSize = status.externalBlockStoreSize
val onDiskSize = status.diskSize
master.updateBlockInfo(
blockManagerId, blockId, storageLevel, inMemSize, onDiskSize, inExternalBlockStoreSize)
} else {
true
}
}
//3.BlockManagerMaster中的updateBlockInfo方法
def updateBlockInfo(
blockManagerId: BlockManagerId,
blockId: BlockId,
storageLevel: StorageLevel,
memSize: Long,
diskSize: Long,
externalBlockStoreSize: Long): Boolean = {
val res = driverEndpoint.askWithRetry[Boolean](
UpdateBlockInfo(blockManagerId, blockId, storageLevel,
memSize, diskSize, externalBlockStoreSize))
logDebug(s"Updated info of block $blockId")
res
}
//4,driverEndpoint收到UpdateBlockInfo的信息
case _updateBlockInfo @ UpdateBlockInfo(
blockManagerId, blockId, storageLevel, deserializedSize, size, externalBlockStoreSize)
context.reply(updateBlockInfo(
blockManagerId, blockId, storageLevel, deserializedSize, size, externalBlockStoreSize
listenerBus.post(SparkListenerBlockUpdated(BlockUpdatedInfo(_updateBlockInfo)))
BlockManager之block数据写入到指定StroreLevel:
不管是putArray还是putBytes,内部都是调用doPut来完成的,那么我们来看下doPut是如何完成数据的写入的,这个方法比较长我们分解解释;
1.先判断该block和storeLevel是否为空;
2.构建putBlockInfo,既即将put的数据对象;
3.根据storeLevel判断使用哪种Blockstore,以及是否返回put操作的值;
4.开始使用blockStore真正的put数据;
5.如果使用的内存,则要将溢出的部分添加到updatedBlocks中;
6.执行putBlockInfo.markReady(size),表示put数据结束,并唤醒其他线程;
7.如果副本个数>1就开始异步复制数据到其他节点;
private def doPut(
blockId: BlockId,
data: BlockValues,
level: StorageLevel,
tellMaster: Boolean = true,
effectiveStorageLevel: Option[StorageLevel] = None)
: Seq[(BlockId, BlockStatus)] = {
//todo 1.判断该block和storeLevel是否为空;
require(blockId != null, "BlockId is null")
require(level != null && level.isValid, "StorageLevel is null or invalid")
effectiveStorageLevel.foreach { level =>
require(level != null && level.isValid, "Effective StorageLevel is null or invalid")
}
//todo 2.构建putBlockInfo
val putBlockInfo = {
//todo 生成BlockInfo
val tinfo = new BlockInfo(level, tellMaster)
// Do atomically !
//todo 将tinfo存入内存中
val oldBlockOpt = blockInfo.putIfAbsent(blockId, tinfo)
//todo 判断该blockInfo是否存在
if (oldBlockOpt.isDefined) {
if (oldBlockOpt.get.waitForReady()) {
logWarning(s"Block $blockId already exists on this machine; not re-adding it")
return updatedBlocks
}
// TODO: So the block info exists - but previous attempt to load it (?) failed.
// What do we do now ? Retry on it ?
oldBlockOpt.get
} else {
tinfo
}
}
//todo 将这个putBlockInfo加锁,防止其他线程操作该blockInfo
putBlockInfo.synchronized {
logTrace("Put for block %s took %s to get into synchronized block"
.format(blockId, Utils.getUsedTimeMs(startTimeMs)))
var marked = false
try {
// returnValues - Whether to return the values put
// blockStore - The type of storage to put these values into
//todo 3.根据storeLevel判断使用哪种Blockstore,以及是否返回put操作的值
val (returnValues, blockStore: BlockStore) = {
if (putLevel.useMemory) {
// Put it in memory first, even if it also has useDisk set to true;
// We will drop it to disk later if the memory store can't hold it.
(true, memoryStore)
} else if (putLevel.useOffHeap) {
// Use external block store
(false, externalBlockStore)
} else if (putLevel.useDisk) {
// Don't get back the bytes from put unless we replicate them
(putLevel.replication > 1, diskStore)
} else {
assert(putLevel == StorageLevel.NONE)
throw new BlockException(
blockId, s"Attempted to put block $blockId without specifying storage level!")
}
}
// Actually put the values
//todo 4.开始使用blockStore真正的put数据
val result = data match {
case IteratorValues(iterator) =>
blockStore.putIterator(blockId, iterator, putLevel, returnValues)
case ArrayValues(array) =>
blockStore.putArray(blockId, array, putLevel, returnValues)
case ByteBufferValues(bytes) =>
bytes.rewind()
blockStore.putBytes(blockId, bytes, putLevel)
}
size = result.size
result.data match {
case Left (newIterator) if putLevel.useMemory => valuesAfterPut = newIterator
case Right (newBytes) => bytesAfterPut = newBytes
case _ =>
}
// Keep track of which blocks are dropped from memory
//todo 5.如果使用的内存,则要将溢出的部分添加到updatedBlocks中
if (putLevel.useMemory) {
result.droppedBlocks.foreach { updatedBlocks += _ }
}
//todo 获取当前block的状态
val putBlockStatus = getCurrentBlockStatus(blockId, putBlockInfo)
if (putBlockStatus.storageLevel != StorageLevel.NONE) {
// Now that the block is in either the memory, externalBlockStore, or disk store,
// let other threads read it, and tell the master about it.
marked = true
//todo 6.表示该block已经put完成
putBlockInfo.markReady(size)
if (tellMaster) {
//todo 向Master汇报block信息
reportBlockStatus(blockId, putBlockInfo, putBlockStatus)
}
updatedBlocks += ((blockId, putBlockStatus))
}
} finally {
// If we failed in putting the block to memory/disk, notify other possible readers
// that it has failed, and then remove it from the block info map.
if (!marked) {
// Note that the remove must happen before markFailure otherwise another thread
// could've inserted a new BlockInfo before we remove it.
blockInfo.remove(blockId)
putBlockInfo.markFailure()
logWarning(s"Putting block $blockId failed")
}
}
}
//todo 7.如果副本个数>1就开始异步复制数据
if (putLevel.replication > 1) {
data match {
case ByteBufferValues(bytes) =>
if (replicationFuture != null) {
Await.ready(replicationFuture, Duration.Inf)
}
case _ =>
val remoteStartTime = System.currentTimeMillis
// Serialize the block if not already done
if (bytesAfterPut == null) {
if (valuesAfterPut == null) {
throw new SparkException(
"Underlying put returned neither an Iterator nor bytes! This shouldn't happen.")
}
bytesAfterPut = dataSerialize(blockId, valuesAfterPut)
}
//todo 将数复制到其他节点上
replicate(blockId, bytesAfterPut, putLevel)
logDebug("Put block %s remotely took %s"
.format(blockId, Utils.getUsedTimeMs(remoteStartTime)))
}
}
......
BlockManager之block数据的读取:
获取数据时数据可能存在本地,也可能存在其他节点上,所以就有两个方法doGetLocal和doGetRmote,我们先看doGetLocal;
1.做双重检测 检查block是否存在;
2.如果有其他的线程正在往这个块中写数据,则向该block块改为只读状态;
3.如果block使用的是memory,则使用memoryStore获取数据;
4.如果block使用的是offheap,则使用externalBlockStore获取数据;
5.如果block使用的是disk,则使用diskStore获取数据,在这里需要说一下,如果数据存放在Disk中,那么spark会再次判断该block是否能够存入磁盘中,如果可以则将block数据放入到memory中,以便再下一次使用的时候可以直接从memory中或者以提高效率;
private def doGetLocal(blockId: BlockId, asBlockResult: Boolean): Option[Any] = {
val info = blockInfo.get(blockId).orNull
if (info != null) {
info.synchronized {
//todo 这里做了双重检测 检查block是否存在
if (blockInfo.get(blockId).isEmpty) {
logWarning(s"Block $blockId had been removed")
return None
}
// If another thread is writing the block, wait for it to become ready.
//todo 如果有其他的线程正在往这个块中写数据,则向该block块改为只读状态
if (!info.waitForReady()) {
// If we get here, the block write failed.
logWarning(s"Block $blockId was marked as failure.")
return None
}
//todo 如果block使用的是memory,则使用memoryStore获取数据
if (level.useMemory) {
logDebug(s"Getting block $blockId from memory")
val result = if (asBlockResult) {
memoryStore.getValues(blockId).map(new BlockResult(_, DataReadMethod.Memory, info.size))
} else {
memoryStore.getBytes(blockId)
}
result match {
case Some(values) =>
return result
case None =>
logDebug(s"Block $blockId not found in memory")
}
}
//todo 如果block使用的是offheap,则使用externalBlockStore获取数据
if (level.useOffHeap) {
logDebug(s"Getting block $blockId from ExternalBlockStore")
if (externalBlockStore.contains(blockId)) {
val result = if (asBlockResult) {
externalBlockStore.getValues(blockId)
.map(new BlockResult(_, DataReadMethod.Memory, info.size))
} else {
externalBlockStore.getBytes(blockId)
}
result match {
case Some(values) =>
return result
case None =>
logDebug(s"Block $blockId not found in ExternalBlockStore")
}
}
}
//todo 如果block使用的是disk,则使用diskStore获取数据
if (level.useDisk) {
logDebug(s"Getting block $blockId from disk")
val bytes: ByteBuffer = diskStore.getBytes(blockId) match {
case Some(b) => b
case None =>
throw new BlockException(
blockId, s"Block $blockId not found on disk, though it should be")
}
assert(0 == bytes.position())
//todo 判断该block是否使用memory存储,如果不可以则直接返回数据
if (!level.useMemory) {
// If the block shouldn't be stored in memory, we can just return it
if (asBlockResult) {
return Some(new BlockResult(dataDeserialize(blockId, bytes), DataReadMethod.Disk,
info.size))
} else {
return Some(bytes)
}
} else {
// Otherwise, we also have to store something in the memory store
if (!level.deserialized || !asBlockResult) {
/* We'll store the bytes in memory if the block's storage level includes
* "memory serialized", or if it should be cached as objects in memory
* but we only requested its serialized bytes. */
memoryStore.putBytes(blockId, bytes.limit, () => {
// https://issues.apache.org/jira/browse/SPARK-6076
// If the file size is bigger than the free memory, OOM will happen. So if we cannot
// put it into MemoryStore, copyForMemory should not be created. That's why this
// action is put into a `() => ByteBuffer` and created lazily.
val copyForMemory = ByteBuffer.allocate(bytes.limit)
copyForMemory.put(bytes)
})
bytes.rewind()
}
if (!asBlockResult) {
return Some(bytes)
} else {
val values = dataDeserialize(blockId, bytes)
if (level.deserialized) {
// Cache the values before returning them
//todo 如果允许使用memory存储,则将查询出来的数据写入到memory中
//todo 这样下次再查找该block数据直接从内存获取,以提高速度
val putResult = memoryStore.putIterator(
blockId, values, level, returnValues = true, allowPersistToDisk = false)
// The put may or may not have succeeded, depending on whether there was enough
// space to unroll the block. Either way, the put here should return an iterator.
putResult.data match {
case Left(it) =>
return Some(new BlockResult(it, DataReadMethod.Disk, info.size))
case _ =>
// This only happens if we dropped the values back to disk (which is never)
throw new SparkException("Memory store did not return an iterator!")
}
} else {
return Some(new BlockResult(values, DataReadMethod.Disk, info.size))
}
}
}
}
......
在doGetRemote方法中主要是使用blockTransferService从其他节点获取数据,如下代码所示:
private def doGetRemote(blockId: BlockId, asBlockResult: Boolean): Option[Any] = {
require(blockId != null, "BlockId is null")
//todo 将存在该block的所有节点打散
val locations = Random.shuffle(master.getLocations(blockId))
var numFetchFailures = 0
for (loc <- locations) {
logDebug(s"Getting remote block $blockId from $loc")
val data = try {
//todo 使用blockTransferService从其他节点获取数据
blockTransferService.fetchBlockSync(
loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()
} catch {
case NonFatal(e) =>
numFetchFailures += 1
if (numFetchFailures == locations.size) {
// An exception is thrown while fetching this block from all locations
throw new BlockFetchException(s"Failed to fetch block from" +
s" ${locations.size} locations. Most recent failure cause:", e)
} else {
// This location failed, so we retry fetch from a different one by returning null here
logWarning(s"Failed to fetch remote block $blockId " +
s"from $loc (failed attempt $numFetchFailures)", e)
null
}
}
if (data != null) {
if (asBlockResult) {
return Some(new BlockResult(
dataDeserialize(blockId, data),
DataReadMethod.Network,
data.limit()))
} else {
return Some(data)
}
}
logDebug(s"The value of block $blockId is null")
}
logDebug(s"Block $blockId not found")
None
}
BlockStore
BlockStore的作用就是在存储block块信息时,客户端不需要关心Store的内部实现(DiskStore,MemoryStore,ExternalBlockStore)细节,一切交给blockManager这个对外的方法类通过指定存储级别去管理;
MemoryStore是BlockManager中专门负责基于内存的数据存储和读写的类;
DiskStore是BlockManager中专门负责基于磁盘的数据存储和读写的类;
DiskBlockManager管理Logical Block与Disk上的Physical Block之间的映射关系并负责磁盘的文件创建和读写;
BlockTransferService负责不同机子上block通信;
至此BlockManager叙述完毕!内部还有像dropFromMemory这样比较重要的方法,在这里不过多叙述,感兴趣的话可以直接打开源码查看!
网友评论