美文网首页
python实现多元线性拟合、一元多项式拟合、多元多项式拟合

python实现多元线性拟合、一元多项式拟合、多元多项式拟合

作者: 途中的蜗牛 | 来源:发表于2020-05-30 08:47 被阅读0次

    数据分析中经常会使用到数据拟合,本文中将阐述如何实现一元以及多元的线性拟合以及多项式拟合,本文中只涉及实现方式,不涉及理论知识。

    模型拟合中涉及的误差评估方法如下所示:


    误差分析
    import numpy as np
    def stdError_func(y_test, y):
      return np.sqrt(np.mean((y_test - y) ** 2))
    
    
    def R2_1_func(y_test, y):
      return 1 - ((y_test - y) ** 2).sum() / ((y.mean() - y) ** 2).sum()
    
    
    def R2_2_func(y_test, y):
      y_mean = np.array(y)
      y_mean[:] = y.mean()
      return 1 - stdError_func(y_test, y) / stdError_func(y_mean, y)
    

    一元线性拟合

    import pandas as pd
    import numpy as np
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn import linear_model
    
    
    filename = "E:/data.csv"
    df= pd.read_csv(filename)
    x = np.array(df.iloc[:,0].values)
    
    y = np.array(df.iloc[:,5].values)
    
    cft = linear_model.LinearRegression()
    cft.fit(x[:,np.newaxis], y) #模型将x变成二维的形式, 输入的x的维度为[None, 1]
    
    print("model coefficients", cft.coef_)
    print("model intercept", cft.intercept_)
    
    
    predict_y =  cft.predict(x[:,np.newaxis])
    strError = stdError_func(predict_y, y)
    R2_1 = R2_1_func(predict_y, y)
    R2_2 = R2_2_func(predict_y, y)
    score = cft.score(x[:,np.newaxis], y) ##sklearn中自带的模型评估,与R2_1逻辑相同
    
    print(' strError={:.2f}, R2_1={:.2f},  R2_2={:.2f}, clf.score={:.2f}'.format(
        strError,R2_1,R2_2,score))
    

    结果输出为:
    model coefficients [-31.2375]
    model intercept 7.415750000000001
    strError=1.11, R2_1=0.28, R2_2=0.15, clf.score=0.28

    模型拟合的表达式为:
    y = 7.415750000000001 +(-31.2375) * x
    从拟合的均方误差和得分来看效果不佳

    多元线性拟合

    import pandas as pd
    import numpy as np
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn import linear_model
    
    filename = "E:/data.csv"
    df= pd.read_csv(filename)
    x = np.array(df.iloc[:,0:4].values)
    
    y = np.array(df.iloc[:,5].values)
    
    cft = linear_model.LinearRegression()
    print(x.shape)
    cft.fit(x, y) #
    
    print("model coefficients", cft.coef_)
    print("model intercept", cft.intercept_)
    
    
    predict_y =  cft.predict(x)
    strError = stdError_func(predict_y, y)
    R2_1 = R2_1_func(predict_y, y)
    R2_2 = R2_2_func(predict_y, y)
    score = cft.score(x, y) ##sklearn中自带的模型评估,与R2_1逻辑相同
    
    print('strError={:.2f}, R2_1={:.2f},  R2_2={:.2f}, clf.score={:.2f}'.format(
        strError,R2_1,R2_2,score))
    

    结果输出为:
    model coefficients [-31.2375 17.74375 44.325 5.7375 ]
    model intercept 0.5051249999999978
    strError=0.58, R2_1=0.80, R2_2=0.56, clf.score=0.80

    模型拟合的表达式为:
    y = 0.5051249999999978 +(-31.2375) * x11 + 17.74375 *x2 + 44.325 * x3 + 5.7375 * x4
    从拟合的均方误差和得分来看在之前的基础上有所提升
    一元多项式拟合

    以三次多项式为例

    import pandas as pd
    import numpy as np
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn import linear_model
    
    filename = "E:/data.csv"
    df= pd.read_csv(filename)
    x = np.array(df.iloc[:,0].values)
    
    y = np.array(df.iloc[:,5].values)
    
    poly_reg =PolynomialFeatures(degree=3) #三次多项式
    X_ploy =poly_reg.fit_transform(x[:, np.newaxis])
    print(X_ploy.shape)
    lin_reg_2=linear_model.LinearRegression()
    lin_reg_2.fit(X_ploy,y)
    predict_y =  lin_reg_2.predict(X_ploy)
    strError = stdError_func(predict_y, y)
    R2_1 = R2_1_func(predict_y, y)
    R2_2 = R2_2_func(predict_y, y)
    score = lin_reg_2.score(X_ploy, y) ##sklearn中自带的模型评估,与R2_1逻辑相同
    
    print("model coefficients", lin_reg_2.coef_)
    print("model intercept", lin_reg_2.intercept_)
    print('degree={}: strError={:.2f}, R2_1={:.2f},  R2_2={:.2f}, clf.score={:.2f}'.format(
        3, strError,R2_1,R2_2,score))
    

    输出结果
    model coefficients [ 0. 990.64583333 -11906.25 44635.41666667]
    model intercept -20.724999999999117
    degree=3: strError=1.08, R2_1=0.32, R2_2=0.17, clf.score=0.32

    对应的函数表达式为 -20.724999999999117 + [0, 990.64583333, -11906.25, 44635.41666667] *[1, x, x^2, x.^3].T = -20.724999999999117 + 990.64583333 * x + ( -11906.25) * x^2 + 44635.41666667 * x^3

    多元多项式拟合

    import pandas as pd
    import numpy as np
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn import linear_model
    
    filename = "E:/data.csv"
    df= pd.read_csv(filename)
    x = np.array(df.iloc[:,0:4].values)
    
    y = np.array(df.iloc[:,5].values)
    
    
    poly_reg =PolynomialFeatures(degree=2) #三次多项式
    X_ploy =poly_reg.fit_transform(x)
    lin_reg_2=linear_model.LinearRegression()
    lin_reg_2.fit(X_ploy,y)
    predict_y =  lin_reg_2.predict(X_ploy)
    strError = stdError_func(predict_y, y)
    R2_1 = R2_1_func(predict_y, y)
    R2_2 = R2_2_func(predict_y, y)
    score = lin_reg_2.score(X_ploy, y) ##sklearn中自带的模型评估,与R2_1逻辑相同
    
    print("coefficients", lin_reg_2.coef_)
    print("intercept", lin_reg_2.intercept_)
    print('degree={}: strError={:.2f}, R2_1={:.2f},  R2_2={:.2f}, clf.score={:.2f}'.format(
        3, strError,R2_1,R2_2,score))
    

    函数输出结果为:

    coefficients [ 0. 332.28129937 -19.9240981 -9.10607925
    -191.05593023 -287.93919929 -912.11402936 -1230.21922184
    -207.90033986 99.03441748 190.26204994 433.25169929
    273.13674555 257.66550523 344.92652936]
    intercept 4.35175537840722
    degree=3: strError=0.23, R2_1=0.97, R2_2=0.82, clf.score=0.97

    代码中输入的自变量是一个包含四个变量的输入, 对应coefficients输出的是长度为15的向量, 其中对应到的变量分别为 variable_X = [1, x1, x2, x3, x4, x1∗x1, x1∗x2, x1∗x3, x1∗x4, x2∗x2, x2∗x3, x2∗x4, x3∗x3, x3∗x4, x4∗x4]

    对应的方程式为: intercept+coefficients∗variableX.T

    intercept+coefficients∗variableX​.T

    代码中涉及到的数据集如下:

    a,b,c,d,e
    0.06,0.2,0.02,0.1,0.340 
    0.1,0.28,0.02,0.14,0.370 
    0.12,0.32,0.02,0.16,0.377 
    0.08,0.24,0.02,0.12,0.383 
    0.08,0.32,0.04,0.1,0.383 
    0.12,0.28,0.03,0.1,0.393 
    0.1,0.24,0.05,0.1,0.385 
    0.06,0.32,0.05,0.14,0.362 
    0.12,0.2,0.05,0.12,0.320 
    0.06,0.28,0.04,0.12,0.393 
    0.08,0.28,0.05,0.16,0.402 
    0.08,0.2,0.03,0.14,0.349 
    0.1,0.2,0.04,0.16,0.335 
    0.1,0.32,0.03,0.12,0.387 
    0.12,0.24,0.04,0.14,0.390 
    0.06,0.24,0.03,0.16,0.315 
    

    指数函数和幂函数拟合参照网址:
    https://blog.csdn.net/kl28978113/article/details/88818885
    参考链接:
    https://blog.csdn.
    net/weixin_44794704/article/details/89246032
    https://blog.csdn.net/bxg1065283526/article/details/80043049
    https://www.cnblogs.com/Lin-Yi/p/8975638.html
    ————————————————
    版权声明:本文为CSDN博主「qq_33511693」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/qq_33511693/java/article/details/105169807

    相关文章

      网友评论

          本文标题:python实现多元线性拟合、一元多项式拟合、多元多项式拟合

          本文链接:https://www.haomeiwen.com/subject/ckqczhtx.html