美文网首页
Spark Streaming(二)集成Flume数据

Spark Streaming(二)集成Flume数据

作者: Sx_Ren | 来源:发表于2018-03-09 17:27 被阅读0次

    Spark Streaming集成Flume有两种方式,分别是基于Push的和基于Pull的,本篇文档参考Spark官网,基于Spark 2.2.0和Flume 1.6.0

    • Push-based

    这种方式是Flume通过Agent去push数据,Spark Streaming使用一个receiver接收数据,这种基于push的方式,必须先启动Spark Streaming的receiver接收数据,然后再启动Flume

    1. 编写Flume Agent:flume_push_streaming.conf,Agent采用netcat为source,avro的sink以及memery的channel:
    simple-agent.sources = netcat-source
    simple-agent.sinks = avro-sink
    simple-agent.channels = memory-channel
    
    simple-agent.sources.netcat-source.type = netcat
    simple-agent.sources.netcat-source.bind = hadoop000
    simple-agent.sources.netcat-source.port = 44444
    
    simple-agent.sinks.avro-sink.type = avro
    simple-agent.sinks.avro-sink.hostname = 192.168.199.203
    simple-agent.sinks.avro-sink.port = 41414
    
    simple-agent.channels.memory-channel.type = memory
    
    simple-agent.sources.netcat-source.channels = memory-channel
    simple-agent.sinks.avro-sink.channel = memory-channel
    
    1. 编写Spark Streaming应用程序

    引入如下spark streaming整合flume的依赖:

    <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-streaming-flume_2.11</artifactId>
          <version>${spark.version}</version>
    </dependency>
    

    应用程序核心代码如下:

    if(args.length!=2){
          System.err.print("Usage:FlumePushWordCount <hostname> <port>")
          System.exit(1)
        }
        
    val Array(hostname,port) = args
    val sparkConf = new SparkConf()//.setAppName("FlumePushWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(sparkConf,Seconds(5))
    val flumeStream = FlumeUtils.createStream(ssc, hostname, port.toInt)
    flumeStream.map(x=>new String(x.event.getBody.array()).trim())
          .flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
    ssc.start()
    ssc.awaitTermination()
    
    1. 生产环境运行
      因为Spark Streaming集成Flume的jar包并未打到程序包里,所以spark-submit启动的时候需要通过--packages org.apache.spark:spark-streaming-flume_2.11:2.2.0添加该jar包,第一次会先去下载jar包,速度会稍慢,第二次就可以直接使用了,详细命令如下:
    spark-submit \
    --class com.yxzc.FlumePushWordCount \
    --master local[2] \
    --packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 \
    /home/hadoop/lib/sparktrain-1.0.jar \
    hadoop000 41414
    

    如果生产环境不能连接外网,或者网速很差时,可以先从maven仓库下载该jar包,然后在spark-submit是通过--jars指定该jar,个人比较推荐这种方式

    1. 启动Flume
      步骤1里已经编写好了Flume Agent,这些直接启动就可以了,启动命令:
    flume-ng agent  \
    --name simple-agent   \
    --conf $FLUME_HOME/conf    \
    --conf-file $FLUME_HOME/conf/flume_push_streaming.conf  \
    -Dflume.root.logger=INFO,console
    
    1. telnet(telnet hadoop000 44444)输入数据,查看Spark Streaming程序输出结果
    • Pull-based
      这种方式是Flume推送数据到一个sink里缓存起来,然后Spark Streaming程序从该sink拉取数据,这种方式成功的前提是数据收到了并被Spark Streaming以多副本的方式成功保存数据,这种方式比push更可靠,容错性更高,这种方式应该先启动Flume,然后再启动Spark Streaming程序
    1. 编写Flume Agent:flume_pull_streaming.conf,Agent采用netcat的source,SparkSink和memery的channel
    simple-agent.sources = netcat-source
    simple-agent.sinks = spark-sink
    simple-agent.channels = memory-channel
    
    simple-agent.sources.netcat-source.type = netcat
    simple-agent.sources.netcat-source.bind = hadoop000
    simple-agent.sources.netcat-source.port = 44444
    
    simple-agent.sinks.spark-sink.type = org.apache.spark.streaming.flume.sink.SparkSink
    simple-agent.sinks.spark-sink.hostname = hadoop000
    simple-agent.sinks.spark-sink.port = 41414
    
    simple-agent.channels.memory-channel.type = memory
    
    simple-agent.sources.netcat-source.channels = memory-channel
    simple-agent.sinks.spark-sink.channel = memory-channel
    
    1. 编写Spark Streaming应用程序
      引入如下spark streaming整合flume的依赖:
    <dependency>
         <groupId>org.apache.spark</groupId>
         <artifactId>spark-streaming-flume-sink_2.11</artifactId>
         <version>${spark.version}</version>
    </dependency>
    <dependency>
        <groupId>org.scala-lang</groupId>
        <artifactId>scala-library</artifactId>
        <version>${scala.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-lang3</artifactId>
        <version>3.5</version>
    </dependency>
    

    应用程序核心代码如下:

    if(args.length!=2){
        System.err.print("Usage:FlumePullWordCount <hostname> <port>")
        System.exit(1)
     }
    val Array(hostname,port) = args
    val sparkConf = new SparkConf()//.setAppName("FlumePullWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(sparkConf,Seconds(5))
    val flumeStream = FlumeUtils.createPollingStream(ssc, hostname, port.toInt)
    flumeStream.map(x=>new String(x.event.getBody.array()).trim())
          .flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
        
    ssc.start()
    ssc.awaitTermination()
    
    1. 启动Flume
      步骤1里已经编写好了Flume Agent,这些直接启动就可以了,启动命令:
    flume-ng agent  \
    --name simple-agent   \
    --conf $FLUME_HOME/conf    \
    --conf-file $FLUME_HOME/conf/flume_pull_streaming.conf  \
    -Dflume.root.logger=INFO,console
    
    1. 生产环境运行
      这里跟push方式没有区别,可以参考上边push方式,详细启动命令为:
    spark-submit \
    --class com.yxzc.FlumePullWordCount \
    --master local[2] \
    --packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 \
    /home/hadoop/lib/sparktrain-1.0.jar \
    hadoop000 41414
    
    1. telnet(telnet hadoop000 44444)输入数据,查看Spark Streaming程序输出结果

    Spark Streaming作为一个流处理框架,Flume作为一个日志收集框架,直接对接其实是有问题的,尤其不同时间段产生日志的数量差异较大时,负载均衡、吞吐量都对机器性能有所要求和限制,所以一般使用Kafka作为一个缓冲队列,从Flume过来的数据先缓存到Kafka里,Spark Streaming从Kafka里获取数据。

    相关文章

      网友评论

          本文标题:Spark Streaming(二)集成Flume数据

          本文链接:https://www.haomeiwen.com/subject/clhsfftx.html