美文网首页
关于pytorch的autograd机制

关于pytorch的autograd机制

作者: 烤肉拌饭多加饭 | 来源:发表于2019-07-17 15:40 被阅读0次

    关于源码还是没看懂

    问题:

    Q: 对pytorch里GAN更新G的过程疑问?
    fake=G(x)
    G.zero_gard()
    out = D(fake)
    loss = cri(out,label)
    loss.backward()
    opt_G.step()
    这里,经过了D网络结构,怎么可以就之更新G了呢???
    A: 经过了前向传播之后,pytorch就构建了计算图,可以想像G计算图的输出作为了D计算图的输入,当loss.backward的时候虽然计算了所有计算图的梯度,但是由于只更新了G参数的数值,所以只利用了G计算图的梯度,这是可以理解的。之前纠结的点是跳过D更新G,但计算梯度的时候确实是经过了D的。只是GAN这里没有去更新D。

    code

    敲了敲代码模拟了一下这个过程

    import torch
    import torch.nn as nn
    import torch.optim as optim
    
    net1 = nn.Conv2d(2,1,kernel_size=3)
    net2 = nn.Linear(3,1)
    x = torch.randn((1,2 ,5, 5), requires_grad=True)
    opt_1 = optim.SGD(net1.parameters(),lr=0.01,momentum=0)
    opt_2 = optim.SGD(net2.parameters(),lr=0.01,momentum=0)
    cri = nn.MSELoss()
    
    #打印参数( out_channels x in_channels x kernel_size x kernel_size )
    for p in net1.parameters():
        print(p) 
    >>>
        Parameter containing:
        tensor([[[[-0.1586,  0.0571, -0.0606],
                  [-0.0712, -0.0753,  0.1583],
                  [-0.1438,  0.0217,  0.2169]],
        
                 [[ 0.0830, -0.2124,  0.1965],
                  [ 0.2107,  0.0655, -0.2229],
                  [ 0.0809,  0.1761, -0.2056]]]], requires_grad=True)
        Parameter containing:
        tensor([0.2213], requires_grad=True)
    
    
    for p in net2.parameters():
        print(p)
    >>>
        Parameter containing:
        tensor([[0.1985, 0.0381, 0.3382]], requires_grad=True)
        Parameter containing:
        tensor([0.1597], requires_grad=True)
    
    #through net1
    y = net1(x)
    print('y',y)
    #through net2
    z = net2(y)
    print('z',z,z.shape)
    
    >>>
        y tensor([[[[ 0.7343,  0.1432, -0.3362],
                  [ 0.5525,  0.5968,  0.6297],
                  [ 1.0429, -0.0552,  0.6783]]]], grad_fn=<MkldnnConvolutionBackward>)
        z tensor([[[[0.1972],
                  [0.5050],
                  [0.5940]]]], grad_fn=<AddBackward0>) torch.Size([1, 1, 3, 1])
    
    #reshape z and compute loss
    net1.zero_grad()
    new_z = z.reshape(1,-1)
    target = torch.tensor([[1,1,0]],dtype=torch.float)
    loss = cri(new_z,target)
    
    #before backward
    print(net1.bias.grad)
    print(net2.bias.grad)
    #==========compute gradient======
    loss.backward()
    #================================
    #after
    print(net1.bias.grad)
    print(net2.bias.grad)
    for f in net1.parameters():
        print(f.grad.data)
    
    >>>
        None
        None
        tensor([-0.2697])
        tensor([-0.4691])
        tensor([[[[-0.5155, -0.3812, -0.3589],
                  [ 0.2562, -0.3376,  0.1517],
                  [ 0.2322, -0.2214,  0.0431]],
        
                 [[ 0.1007,  0.2636,  0.0203],
                  [ 0.0201,  0.0348, -0.2474],
                  [-0.0404,  0.0261,  0.0283]]]])
        tensor([-0.2697])
    
    for p in net1.parameters():
        print(p)
        print('manully updata params:')
        tmp_p = p.data.clone()
        print(tmp_p.sub_(p.grad.data*0.01))#weight = weight-lr*d_p
        print('---')
        print(p.data)
    for p in net2.parameters():
        print(p)
    
    Parameter containing:
    tensor([[[[-0.1586,  0.0571, -0.0606],
              [-0.0712, -0.0753,  0.1583],
              [-0.1438,  0.0217,  0.2169]],
    
             [[ 0.0830, -0.2124,  0.1965],
              [ 0.2107,  0.0655, -0.2229],
              [ 0.0809,  0.1761, -0.2056]]]], requires_grad=True)
    manully updata params:
    tensor([[[[-0.1535,  0.0609, -0.0570],
              [-0.0738, -0.0719,  0.1568],
              [-0.1461,  0.0239,  0.2165]],
    
             [[ 0.0820, -0.2150,  0.1963],
              [ 0.2105,  0.0652, -0.2204],
              [ 0.0813,  0.1758, -0.2059]]]])
    ---
    tensor([[[[-0.1586,  0.0571, -0.0606],
              [-0.0712, -0.0753,  0.1583],
              [-0.1438,  0.0217,  0.2169]],
    
             [[ 0.0830, -0.2124,  0.1965],
              [ 0.2107,  0.0655, -0.2229],
              [ 0.0809,  0.1761, -0.2056]]]])
    Parameter containing:
    tensor([0.2213], requires_grad=True)
    manully updata params:
    tensor([0.2240])
    ---
    tensor([0.2213])
    Parameter containing:
    tensor([[0.1985, 0.0381, 0.3382]], requires_grad=True)
    Parameter containing:
    tensor([0.1597], requires_grad=True)
    
    #upadate
    opt_1.step()
    
    for p in net1.parameters():
        print(p)
    print('=======')
    for p in net2.parameters():
        print(p)
    
    Parameter containing:
    tensor([[[[-0.1535,  0.0609, -0.0570],
              [-0.0738, -0.0719,  0.1568],
              [-0.1461,  0.0239,  0.2165]],
    
             [[ 0.0820, -0.2150,  0.1963],
              [ 0.2105,  0.0652, -0.2204],
              [ 0.0813,  0.1758, -0.2059]]]], requires_grad=True)
    Parameter containing:
    tensor([0.2240], requires_grad=True)
    =======
    Parameter containing:
    tensor([[0.1985, 0.0381, 0.3382]], requires_grad=True)
    Parameter containing:
    tensor([0.1597], requires_grad=True)
    

    大概就是这么个流程,不过具体的自动求导机制暂时还看不懂源码,之后如果看懂的话,会在这里补充的。

    相关文章

      网友评论

          本文标题:关于pytorch的autograd机制

          本文链接:https://www.haomeiwen.com/subject/cmnqlctx.html