美文网首页
用sklearn 实践AUC画图

用sklearn 实践AUC画图

作者: 一百万个不确定 | 来源:发表于2019-03-25 19:10 被阅读0次

    sklearn 画AUC图 图例

    1, 加载包

    print(__doc__)
    
    import numpy as np
    from scipy import interp
    import matplotlib.pyplot as plt
    
    from sklearn import svm, datasets
    from sklearn.metrics import roc_curve, auc
    from sklearn.model_selection import StratifiedKFold
    

    2, 加载数据

    
    # Import some data to play with
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    X, y = X[y != 2], y[y != 2]
    n_samples, n_features = X.shape
    

    3, 加入噪音

    # Add noisy features
    random_state = np.random.RandomState(0)
    X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
    

    4, 遍历画图

    # plot ROC curve and area the curve
    tprs = []
    aucs = []
    mean_fpr = np.linspace(0, 1, 100)
    
    i = 0
    for train, test in cv.split(X, y):
        probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
        # Compute ROC curve and area the curve
        fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
        tprs.append(interp(mean_fpr, fpr, tpr))
        tprs[-1][0] = 0.0
        roc_auc = auc(fpr, tpr)
        aucs.append(roc_auc)
        plt.plot(fpr, tpr, lw=1, alpha=0.3,
                 label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc))
    
        i += 1
    

    5, 画图

    # 画图
    plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
             label='Chance', alpha=.8)
    
    mean_tpr = np.mean(tprs, axis=0)
    mean_tpr[-1] = 1.0
    mean_auc = auc(mean_fpr, mean_tpr)
    std_auc = np.std(aucs)
    plt.plot(mean_fpr, mean_tpr, color='b',
             label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc),
             lw=2, alpha=.8)
    
    std_tpr = np.std(tprs, axis=0)
    tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
    tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
    plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,
                     label=r'$\pm$ 1 std. dev.')
    
    plt.xlim([-0.05, 1.05])
    plt.ylim([-0.05, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
    plt.show()
    
    
    1.png

    相关文章

      网友评论

          本文标题:用sklearn 实践AUC画图

          本文链接:https://www.haomeiwen.com/subject/conbvqtx.html