美文网首页区块链研习社程序员
IPFS文件地址链上存储

IPFS文件地址链上存储

作者: Kirn | 来源:发表于2018-07-07 16:00 被阅读194次

    IPFS 是什么

    IPFS(InterPlanetary File System,星际文件系统)是永久的、去中心化保存和共享文件的方法,这是一种内容可寻址、版本化、点对点超媒体的分布式协议。
    内容可寻址:通过文件内容生成唯一哈希值来标识文件,而不是通过文件保存位置来标识。相同内容的文件在系统中只会存在一份,节约存储空间
    版本化:可追溯文件修改历史
    点对点超媒体:P2P 保存各种各样类型的数据
    可以把 IPFS 想象成所有文件数据是在同一个 BitTorrent 群并且通过同一个 Git 仓库存取。
    总之,它集一些成功系统(分布式哈希表、BitTorrent、Git、自认证文件系统)的优势于一身,是一套很厉害的文件存取系统。

    区块链和IPFS的结合

    大家都知道区块链的数据是可以永久保存的,但是如果在区块链上存储大量的数据是非常昂贵的。如果结合IPFS,我们可以在IPFS以文件的形式存储数据并把文件的地址保存在区块链上,这样就可以做到大量数据的永久存储并可以有效追踪。当然再结合区块链上的智能合约就可以发挥更大的想象力了。

    IPFS地址分析

    为了在链上存储IPFS的文件地址,我们对IPFS的文件地址做一下简单的分析。由于IPFS的数据块大小为256字节,因此如果文件大小超过此大小会被拆分为多个数据块。多个数据块要涉及到Merkle DAG(Directed Acyclic Graph) 默克有向无环图,相对复杂一点,后续的文章再做分析。这里我们简单分析一下单数据区块的情况。
    IPFS的源码分离出部分代码,可以生成文件的IPFS地址

    function ipfsHash(filePath) {
        var buffer = fs.readFileSync(filePath);
        const unixFs = new Unixfs('file', buffer);
        DAGNode.create(unixFs.marshal(), (err, dagNode) => {
            let json = dagNode.toJSON();
            console.log("File:0x" + buffer.toString('hex'));
            console.log("UnixFs:0x" + unixFs.marshal().toString('hex'));
            console.log("Header+UnixFS:0x" + dagNode.serialized.toString('hex'));
            console.log("Multihash:0x" + dagNode.multihash.toString('hex'));
            console.log("Address:" + json.multihash);
            console.log("---------------------------------------------------------------------");
        });
    }
    ipfsHash('/Users/Kirn/Documents/Workspace/Dawn/ethereum/assets/test.txt');
    
    File:0x310a320a330a340a350a360a370a0a
    UnixFs:0x0802120f310a320a330a340a350a360a370a0a180f
    Header+UnixFS:0x0a150802120f310a320a330a340a350a360a370a0a180f
    Multihash:0x1220a1001394f749d9a0c5f27761b2f08e9432ce215dad6f01dbe26e468857169cbb
    Address:QmZB8R7T5xvKJDUJ6pXtUym6frQx1r6bQPcwquR1rtGHL6
    

    为了能更清楚的了解IPFS的地址构成我们把整个构造过程拆解一下

    function customHash(filePath) {
        // 读取文件Buffer
        var buffer = fs.readFileSync(filePath);
    
        // 转为Unix File System
        const unixFs = new Unixfs('file', buffer).marshal();
    
        // 添加tag
        let tag = Buffer.from([10])
        
        // 添加File Size
        let size = Buffer.from([unixFs.length]);
        var newBuffer = Buffer.concat([tag, size, unixFs]);
    
        // sha2-256
        let sha256 = crypto.createHash('sha256').update(newBuffer).digest();
    
        // multihash
        let multihash = multihashes.encode(sha256, 'sha2-256');
    
        // base58
        let base58 = bs58.encode(multihash).toString('hex');
        console.log("File:0x" + buffer.toString('hex'));
        console.log("UnixFs:0x" + unixFs.toString('hex'));
        console.log("Header+UnixFS:0x" + newBuffer.toString('hex'));
        console.log("Sha256:0x" + sha256.toString('hex'));
        console.log("Multihash:0x" + multihash.toString('hex'));
        console.log("Address:" + base58);
        console.log("---------------------------------------------------------------------");
    }
    customHash('/Users/Kirn/Documents/Workspace/Dawn/ethereum/assets/test.txt');
    
    File:0x310a320a330a340a350a360a370a0a
    UnixFs:0x0802120f310a320a330a340a350a360a370a0a180f
    Header+UnixFS:0x0a150802120f310a320a330a340a350a360a370a0a180f
    Sha256:0xa1001394f749d9a0c5f27761b2f08e9432ce215dad6f01dbe26e468857169cbb
    Multihash:0x1220a1001394f749d9a0c5f27761b2f08e9432ce215dad6f01dbe26e468857169cbb
    Address:QmZB8R7T5xvKJDUJ6pXtUym6frQx1r6bQPcwquR1rtGHL6
    

    大致可以分解为以下步骤

    • 读取文件数据为Buffer
    • 把文件数据转为Unix文件格式
    • 数据流头部增加Metadata数据
      • tag: 0x0a=10(此处也不知为何,后续再做研究)
      • 文件大小
    • sha2-256编码
    • 转为multihash格式,目前IPFS采用的是32位sha2-256编码,因此数据头部需要增加0x1220,0x12代表sha256,0x20=32代表hash位数
    • Base58编码

    IPFS链上存储方案

    针对于上面对IPFS地址的分析,我们可以在链上采取两种存取方案

    • 存储方案一
      以string的形式直接存储IPFS地址,优点:简单明了,读取和存储都很方便,缺点:占用空间大,gas消耗可能会比较大
    • 存储方案二
      以bytes32的形式只存储IPFS地址的sha256之后的结果,优点:占用空间少,gas消耗较少,缺点:读取和存储相对比较麻烦

    写一个简单的合约测试一下

    pragma solidity ^0.4.21;
    
    contract IPFSAddress {
        mapping(address => bytes32) public bytesIpfs;
        mapping (address=>string) public stringIpfs;
        
        // save as bytes32
        function saveBytes(bytes32 ipfs) public {
            bytesIpfs[msg.sender] = ipfs;
        }
        
        // save as string 
        function saveString(string ipfs) public {
            stringIpfs[msg.sender] = ipfs;
        }
    }
    

    string存储交易回执

    QmZB8R7T5xvKJDUJ6pXtUym6frQx1r6bQPcwquR1rtGHL6
    {
      blockHash: "0x1385ab689055d504d98b675da4803708be856368e8dd2799a917b1153d5712e2",
      blockNumber: 185768,
      contractAddress: null,
      cumulativeGasUsed: 85962,
      from: "0x262bab6a90aa1741390c4a3ec58855c81d9728e1",
      gasUsed: 85962,
      logs: [],
      logsBloom: "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
      root: "0xc37b7485014a3fc7ff943c4f753b77e649526633d490ca815ff2abd385699c88",
      to: "0xb6093ecf6a2ae6b94bb2e45186da0f2bcfa315a5",
      transactionHash: "0xfe6162aceeb211ace9b2c689135778ec28c1c5d778785f20a0a246220b18cfa4",
      transactionIndex: 0
    }
    

    bytes32存储交易回执

    0xa1001394f749d9a0c5f27761b2f08e9432ce215dad6f01dbe26e468857169cbb
    {
      blockHash: "0xf7f47ef6d77773b54fe143c933d67c49ee0694851bb7fa7cafb2b594d14c1d0e",
      blockNumber: 185766,
      contractAddress: null,
      cumulativeGasUsed: 43595,
      from: "0x262bab6a90aa1741390c4a3ec58855c81d9728e1",
      gasUsed: 43595,
      logs: [],
      logsBloom: "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
      root: "0x476961f34dbbfc86c47a2f4935a5840b23fee03578994c56625ca83af75acf7f",
      to: "0xb6093ecf6a2ae6b94bb2e45186da0f2bcfa315a5",
      transactionHash: "0x0a8b740c94deae4df8df76852d03f74461843235e0c05b78f31c8f06ee2f81a3",
      transactionIndex: 0
    }
    

    对比两次链上交易的结果:

    • string存储消耗:gasUsed: 85962
    • bytes32存储消耗:gasUsed: 43595

    bytes32存储差不多是string存储gas消耗的一半,算是一个较优的存储方案,当然前提是multihash采用的hash算法不变的情况下。因为IPFS的地址采用了multihash,在sha256算法不安全的情况下可以随时更换其他hash算法而不需要更改设计方案。

    解析链上IPFS地址

    为了方便查询链上的IPFS地址,可以把base58编码的算法在合约里实现一下,这里用library实现。

    library IPFSLib {
        bytes constant ALPHABET = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
    
        /**
         * @dev Base58 encoding
         * @param _source Bytes data
         * @return Encoded bytes data
         */
        function base58Address(bytes _source) internal pure returns (bytes) {
            uint8[] memory digits = new uint8[](_source.length * 136/100 + 1);
            digits[0] = 0;
            uint8 digitlength = 1;
            for (uint i = 0; i < _source.length; ++i) {
                uint carry = uint8(_source[i]);
                for (uint j = 0; j<digitlength; ++j) {
                    carry += uint(digits[j]) * 256;
                    digits[j] = uint8(carry % 58);
                    carry = carry / 58;
                }
                
                while (carry > 0) {
                    digits[digitlength] = uint8(carry % 58);
                    digitlength++;
                    carry = carry / 58;
                }
            }
            return toAlphabet(reverse(truncate(digits, digitlength)));
        }
    
        /**
         * @dev Truncate `_array` by `_length`
         * @param _array The source array
         * @param _length The target length of the `_array`
         * @return The truncated array 
         */
        function truncate(uint8[] _array, uint8 _length) internal pure returns (uint8[]) {
            uint8[] memory output = new uint8[](_length);
            for (uint i = 0; i < _length; i++) {
                output[i] = _array[i];
            }
            return output;
        }
        
        /**
         * @dev Reverse `_input` array 
         * @param _input The source array 
         * @return The reversed array 
         */
        function reverse(uint8[] _input) internal pure returns (uint8[]) {
            uint8[] memory output = new uint8[](_input.length);
            for (uint i = 0; i < _input.length; i++) {
                output[i] = _input[_input.length - 1 - i];
            }
            return output;
        }
    
        /**
         * @dev Convert the indices to alphabet
         * @param _indices The indices of alphabet
         * @return The alphabets
         */
        function toAlphabet(uint8[] _indices) internal pure returns (bytes) {
            bytes memory output = new bytes(_indices.length);
            for (uint i = 0; i < _indices.length; i++) {
                output[i] = ALPHABET[_indices[i]];
            }
            return output;
        }
    
        /**
         * @dev Convert bytes32 to bytes
         * @param _input The source bytes32
         * @return The bytes
         */
        function toBytes(bytes32 _input) internal pure returns (bytes) {
            bytes memory output = new bytes(32);
            for (uint8 i = 0; i < 32; i++) {
                output[i] = _input[i];
            }
            return output;
        }
    
        /**
         * @dev Concat two bytes to one
         * @param _byteArray The first bytes
         * @param _byteArray2 The second bytes
         * @return The concated bytes
         */
        function concat(bytes _byteArray, bytes _byteArray2) internal pure returns (bytes) {
            bytes memory returnArray = new bytes(_byteArray.length + _byteArray2.length);
            for (uint16 i = 0; i < _byteArray.length; i++) {
                returnArray[i] = _byteArray[i];
            }
            for (i; i < (_byteArray.length + _byteArray2.length); i++) {
                returnArray[i] = _byteArray2[i - _byteArray.length];
            }
            return returnArray;
        }
    }
    
    contract IPFSAddress {
        using IPFSLib for bytes;
        using IPFSLib for bytes32;
        mapping(address => bytes32) public bytesIpfs;
        mapping (address=>string) public stringIpfs;
        
        function saveBytes(bytes32 ipfs) public {
            bytesIpfs[msg.sender] = ipfs;
        }
        
        function saveString(string ipfs) public {
            stringIpfs[msg.sender] = ipfs;
        }
        
        function ipfsAddress() external view returns (string) { 
            bytes memory prefix = new bytes(2);
            prefix[0] = 0x12;
            prefix[1] = 0x20;
            bytes memory value = prefix.concat(bytesIpfs[msg.sender].toBytes());
            bytes memory ipfsBytes = value.base58Address();
            return string(ipfsBytes);
        }
    }
    

    合约已部署Ropsten,可作参考

    https://ropsten.etherscan.io/address/0x0581d89b0b4edf171a199937b1d16a1033ba7538

    相关文章

      网友评论

        本文标题:IPFS文件地址链上存储

        本文链接:https://www.haomeiwen.com/subject/cqhmuftx.html