在JVM和CPU层面分析Java如何实现并发编程。
volatile、synchronized和原子操作的实现原理。
Java中的大部分容器和框架都依赖于volatile和原子操作的实现原理。
过程:
源码 --> 编译器 --> 字节码 --> 类加载器 --> JVM --> 转为汇编指令 --> CPU
并发机制的实现依赖JVM的实现和CPU指令。
volatile :
轻量级的synchronized。
保证共享变量的“可见性”。(当一个线程改变变量的值,另外一个线程能读到修改后的值)
比synchronized执行成本更低。不会引起上下文切换和调度。
volatile定义:
允许线程访问共享变量。为了保证变量的同步,线程应该通过排他锁单独获取这个变量。Java内存模型保证所有线程看到这个变量的值是一致的。
volatile是在处理器(CPU指令集)的维度来实现的。(不同的处理器实现方式不一样,因为指令集不一样)
涉及的CPU术语:
image.png
阐述见书。
synchronized实现原理和应用:
JDK1.6为了减少获得锁和释放锁带来的性能消耗而引入偏向锁和轻量级锁,以及锁的存储结构和升级过程。
每一个对象都可以作为锁对象:
- 对于普通同步方法,锁是当前实例对象。
- 对于静态同步方法,锁是当前类的Class对象。
- 对于同步方法块,锁是Synchonized括号里配置的对象。
JVM基于进入和退出Monitor对象来实现方法同步和代码块同步。
代码块同步是使用monitorenter和monitorexit指令实现。而方法同步是使用另外一种方式实现的,细节在JVM规范里并没有详细说明。但是,方法的同步同样可以使用这两个指令来实现。
monitorenter指令是在编译后插入到同步代码块的开始位置,而monitorexit是插入到方法结束处和异常处。JVM要保证每个monitorenter必须有对应的monitorexit与之配对。
任何对象都有一个monitor与之关联,当且一个monitor被持有后,它将处于锁定状态。
线程执行到monitorenter指令时,将会尝试获取对象所对应的monitor的所有权,即尝试获得对象的锁。
synchronized用的锁是存在Java对象头里的。
image.png image.png image.png锁有四种状态:
级别从低到高依次是:无锁状态、偏向锁状态、轻量级锁状
态和重量级锁状态,这几个状态会随着竞争情况逐渐升级。
锁可以升级但不能降级,意味着偏向锁升级成轻量级锁后不能降级成偏向锁。这种锁升级却不能降级的策略,目的是为了提高获得锁和释放锁的效率
偏向锁:
研究发现,大多数情况下,锁不仅不存在多线程竞争,而且总是由同
一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。
当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。
如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下Mark Word中偏向锁的标识是否设置成1(表示当前是偏向锁):如果没有设置,则使用CAS竞争锁;如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程。
偏向锁使用了一种等到竞争出现才释放锁的机制,所以当其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁。
偏向锁的撤销,需要等待全局安全点(在这个时间点上没有正在执行的字节码)。
它会首先暂停拥有偏向锁的线程,然后检查持有偏向锁的线程是否活着,如果线程不处于活动状态,则将对象头设置成无锁状态;如果线程仍然活着,拥有偏向锁的栈会被执行,遍历偏向对象的锁记录,栈中的锁记录和对象头的Mark Word要么重新偏向于其他线程,要么恢复到无锁或者标记对象不适合作为偏向锁,最后唤醒暂停的线程。
偏向锁初始化的流程偏向锁在Java 6和Java 7里是默认启用的,但是它在应用程序启动几秒钟之后才激活,如有必要可以使用JVM参数来关闭延迟:-XX:BiasedLockingStartupDelay=0。
如果确定应用程序里所有的锁通常情况下处于竞争状态,可以通过JVM参数关闭偏向锁:-XX:-UseBiasedLocking=false,那么程序默认会进入轻量级锁状态。
轻量级锁:
轻量级锁加锁:
线程在执行同步块之前,JVM会先在当前线程的栈桢中创建用于存储锁记录的空间,并将对象头中的Mark Word复制到锁记录中,官方称为Displaced Mark Word。
然后线程尝试使用CAS将对象头中的Mark Word替换为指向锁记录的指针。
如果成功,当前线程获得锁,如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。
轻量级锁解锁:
争夺锁导致的锁膨胀流程图轻量级解锁时,会使用原子的CAS操作将Displaced Mark Word替换回到对象头,如果成功,则表示没有竞争发生。如果失败,表示当前锁存在竞争,锁就会膨胀成重量级锁。
锁的优缺点的对比因为自旋会消耗CPU,为了避免无用的自旋(比如获得锁的线程被阻塞住了),一旦锁升级成重量级锁,就不会再恢复到轻量级锁状态。
当锁处于这个状态下,其他线程试图获取锁时,都会被阻塞住,当持有锁的线程释放锁之后会唤醒这些线程,被唤醒的线程就会进行新一轮的夺锁之争。
原子操作的原理:
“不可被中断的一个或一系列操作”。
在多处理器上实现原子操作就变得有点复杂。
处理器如何实现原子操作:
CPU术语定义32位IA-32处理器使用基于对缓存加锁或总线加锁的方式来实现多处理器之间的原子操作。
具体阐述见书。
Java如何实现原子操作:
在Java中可以通过锁和循环CAS的方式来实现原子操作。
锁机制保证了只有获得锁的线程才能够操作锁定的内存区域。JVM内部实现了很多种锁机制,有偏向锁、轻量级锁和互斥锁。
有意思的是除了偏向锁,JVM实现锁的方式都用了循环CAS,即当一个线程想进入同步块的时候使用循环CAS的方式来获取锁,当它退出同步块的时候使用循环CAS释放锁。
JVM中的CAS操作正是利用了处理器提供的CMPXCHG指令实现的。自旋CAS实现的基本思路就是循环进行CAS操作直到成功为止。
CAS仍然存在三大问题。
ABA问题,循环时间长开销大,以及只能保证一个共享变量的原子操作。
1)ABA问题。因为CAS需要在操作值的时候,检查值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。
ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么A→B→A就会变成1A→2B→3A。从Java 1.5开始,JDK的Atomic包里提供了一个类AtomicStampedReference来解决ABA问题。
这个类的compareAndSet方法的作用是首先检查当前引用是否等于预期引用,并且检查当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
public boolean compareAndSet(
V expectedReference, // 预期引用
V newReference, // 更新后的引用
int expectedStamp, // 预期标志
int newStamp // 更新后的标志
)
2)循环时间长开销大。自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。
3)只能保证一个共享变量的原子操作。当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁。
还有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如,有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java 1.5开始,JDK提供了AtomicReference类来保证引用对象之间的原子性,就可以把多个变量放在一个对象里来进行CAS操作。
使用循环CAS实现原子操作code:
package chapter2;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
/**
* 使用循环CAS实现原子操作
* 安全的计数器
* 不安全的计数器
*/
public class Counter {
AtomicInteger atomicInteger = new AtomicInteger(0);
private int i = 0;
public static void main(String[] args) {
final Counter counter = new Counter();
List<Thread> ts = new ArrayList<Thread>(600);
long start = System.currentTimeMillis();
for (int i = 0; i < 100; i++) {
Thread t = new Thread(new Runnable() {
@Override
public void run() {
for (int j = 0; j < 10000; j++) {
counter.safeCount();
counter.unsafeCount();
}
}
});
ts.add(t);
}
for (Thread t : ts) {
t.start();
}
// 等待所有线程执行完成
for (Thread t : ts) {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(counter.i);
System.out.println(counter.atomicInteger.get());
System.out.println(System.currentTimeMillis() - start);
}
/**
* 使用循环CAS实现线程安全的计数器
*/
void safeCount() {
for (;;) {
int i = atomicInteger.get();
boolean suc = atomicInteger.compareAndSet(i, ++i);
if (suc) {
break;
}
}
}
/**
* 非线程安全的计数器
*/
void unsafeCount() {
i++;
}
}
网友评论