美文网首页
Art Generation with Neural Style

Art Generation with Neural Style

作者: 平仄_pingze | 来源:发表于2018-11-13 13:41 被阅读280次

https://hub.coursera-notebooks.org/user/drsgzwuyxfwbxyqiwuianj/notebooks/week4/Neural%20Style%20Transfer/Art%20Generation%20with%20Neural%20Style%20Transfer%20-%20v2.ipynb#

提前准备:
imagenet-vgg-verydeep-19.mat
nst_utils.py
400x300的原图和风格图片

完整代码:

import os
import sys
import scipy.io
import scipy.misc
import matplotlib.pyplot as plt
from matplotlib import pyplot
from PIL import Image
from nst.nst_utils import *
import numpy as np
import tensorflow as tf

def imshow(img):
    pyplot.imshow((img * 255).astype(np.uint8))
    pyplot.show()

# GRADED FUNCTION: compute_content_cost

def compute_content_cost(a_C, a_G):
    """
    Computes the content cost

    Arguments:
    a_C -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image C
    a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image G

    Returns:
    J_content -- scalar that you compute using equation 1 above.
    """

    ### START CODE HERE ###
    # Retrieve dimensions from a_G (≈1 line)
    # m, n_H, n_W, n_C = a_G.get_shape().as_list()

    # Reshape a_C and a_G (≈2 lines)
    a_C_unrolled = tf.contrib.layers.flatten(a_C)
    a_G_unrolled = tf.contrib.layers.flatten(a_G)

    # compute the cost with tensorflow (≈1 line)
    J_content = tf.reduce_sum(tf.square(tf.subtract(a_C_unrolled, a_G_unrolled))) * (1/(4*a_G.get_shape().num_elements()))
    ### END CODE HERE ###

    return J_content


# GRADED FUNCTION: gram_matrix

def gram_matrix(A):
    """
    格拉姆矩阵。可以展现风格信息
    Argument:
    A -- matrix of shape (n_C, n_H*n_W)

    Returns:
    GA -- Gram matrix of A, of shape (n_C, n_C)
    """

    ### START CODE HERE ### (≈1 line)
    GA = tf.matmul(A, tf.transpose(A))
    ### END CODE HERE ###

    return GA


# GRADED FUNCTION: compute_layer_style_cost

def compute_layer_style_cost(a_S, a_G):
    """
    Arguments:
    a_S -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image S
    a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image G

    Returns:
    J_style_layer -- tensor representing a scalar value, style cost defined above by equation (2)
    """

    ### START CODE HERE ###
    # Retrieve dimensions from a_G (≈1 line)
    m, n_H, n_W, n_C = a_G.get_shape().as_list()

    # Reshape the images to have them of shape (n_C, n_H*n_W) (≈2 lines)
    # 不能直接reshape,会影响reshape时元素的排列方式
    a_S = tf.reshape(tf.transpose(a_S), [n_C, n_H*n_W])
    a_G = tf.reshape(tf.transpose(a_G), [n_C, n_H*n_W])
    # a_S = tf.transpose(tf.reshape(a_S, [n_H*n_W, n_C]))
    # a_G = tf.transpose(tf.reshape(a_G, [n_H*n_W, n_C]))

    # Computing gram_matrices for both images S and G (≈2 lines)
    GS = gram_matrix(a_S)
    GG = gram_matrix(a_G)

    # Computing the loss (≈1 line)
    J_style_layer = tf.reduce_sum(tf.square(tf.subtract(GS, GG))) / (4*n_C*n_C*(n_H*n_W)*(n_H*n_W))

    ### END CODE HERE ###

    return J_style_layer

STYLE_LAYERS = [
    ('conv1_1', 0.2),
    ('conv2_1', 0.2),
    ('conv3_1', 0.2),
    ('conv4_1', 0.2),
    # ('conv5_1', 0.2),
]

def compute_style_cost(model, STYLE_LAYERS):
    """
    Computes the overall style cost from several chosen layers

    Arguments:
    model -- our tensorflow model
    STYLE_LAYERS -- A python list containing:
                        - the names of the layers we would like to extract style from
                        - a coefficient for each of them

    Returns:
    J_style -- tensor representing a scalar value, style cost defined above by equation (2)
    """

    # initialize the overall style cost
    J_style = 0

    for layer_name, coeff in STYLE_LAYERS:
        # Select the output tensor of the currently selected layer
        out = model[layer_name]

        # Set a_S to be the hidden layer activation from the layer we have selected, by running the session on out
        a_S = sess.run(out)

        # Set a_G to be the hidden layer activation from same layer. Here, a_G references model[layer_name]
        # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that
        # when we run the session, this will be the activations drawn from the appropriate layer, with G as input.
        a_G = out

        # Compute style_cost for the current layer
        J_style_layer = compute_layer_style_cost(a_S, a_G)

        # Add coeff * J_style_layer of this layer to overall style cost
        J_style += coeff * J_style_layer

    return J_style

# GRADED FUNCTION: total_cost

def total_cost(J_content, J_style, alpha=10, beta=40):
    """
    Computes the total cost function

    Arguments:
    J_content -- content cost coded above
    J_style -- style cost coded above
    alpha -- hyperparameter weighting the importance of the content cost
    beta -- hyperparameter weighting the importance of the style cost

    Returns:
    J -- total cost as defined by the formula above.
    """

    ### START CODE HERE ### (≈1 line)
    J = alpha * J_content + beta* J_style
    ### END CODE HERE ###

    return J


# ###### MAIN ######

# Reset the graph
tf.reset_default_graph()

# Start interactive session
sess = tf.InteractiveSession()

content_image = scipy.misc.imread("images/louvre.jpg")
content_image = reshape_and_normalize_image(content_image)

style_image = scipy.misc.imread("images/vangogh.jpg")
style_image = reshape_and_normalize_image(style_image)

generated_image = generate_noise_image(content_image)
# imshow(generated_image[0]/255)

model = load_vgg_model("pretrained-model/imagenet-vgg-verydeep-19.mat")

print(model.keys())

# Assign the content image to be the input of the VGG model.
sess.run(model['input'].assign(content_image))

# Select the output tensor of layer conv4_2
out = model['conv2_2']

# Set a_C to be the hidden layer activation from the layer we have selected
a_C = sess.run(out)

# Set a_G to be the hidden layer activation from same layer. Here, a_G references model['conv4_2']
# and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that
# when we run the session, this will be the activations drawn from the appropriate layer, with G as input.
a_G = out

# Compute the content cost
J_content = compute_content_cost(a_C, a_G)

# Assign the input of the model to be the "style" image
sess.run(model['input'].assign(style_image))

# Compute the style cost
J_style = compute_style_cost(model, STYLE_LAYERS)

# Compute the total cost
J = total_cost(J_content, J_style, alpha=10, beta=160)

# define optimizer (1 line)
optimizer = tf.train.AdamOptimizer(2.0)

# define train_step (1 line)
train_step = optimizer.minimize(J)

def model_nn(sess, input_image, num_iterations=100):
    # Initialize global variables (you need to run the session on the initializer)
    ### START CODE HERE ### (1 line)
    sess.run(tf.global_variables_initializer())
    ### END CODE HERE ###

    # Run the noisy input image (initial generated image) through the model. Use assign().
    ### START CODE HERE ### (1 line)
    sess.run(model['input'].assign(generate_noise_image(content_image)))
    ### END CODE HERE ###

    generated_image = None

    for i in range(num_iterations):

        # Run the session on the train_step to minimize the total cost
        ### START CODE HERE ### (1 line)
        sess.run(train_step)
        ### END CODE HERE ###

        # Compute the generated image by running the session on the current model['input']
        # 使用了输入层的值
        ### START CODE HERE ### (1 line)
        generated_image = sess.run(model["input"])
        ### END CODE HERE ###

        # Print every 20 iteration.
        if i % 20 == 0:
            Jt, Jc, Js = sess.run([J, J_content, J_style])
            print("Iteration " + str(i) + " :")
            print("total cost = " + str(Jt))
            print("content cost = " + str(Jc))
            print("style cost = " + str(Js))

            # save current generated image in the "/output" directory
            save_image("output/" + str(i) + ".png", generated_image)

    # save last generated image
    save_image('output/generated_image.jpg', generated_image)

    return generated_image

model_nn(sess, generated_image, num_iterations=120)

# ###### TESTS ######

def test_content_cost():
    tf.reset_default_graph()
    with tf.Session() as test:
        # tf.set_random_seed(1) 保证之后执行,随机出来的数据一样
        tf.set_random_seed(1)
        a_C = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
        a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
        J_content = compute_content_cost(a_C, a_G)
        print("J_content = " + str(J_content.eval()))

def test_style_matrix():
    tf.reset_default_graph()
    with tf.Session() as test:
        tf.set_random_seed(1)
        A = tf.random_normal([3, 2 * 1], mean=1, stddev=4)
        GA = gram_matrix(A)
        print("GA = " + str(GA.eval()))

def test_style_cost():
    tf.reset_default_graph()
    with tf.Session() as test:
        tf.set_random_seed(1)
        a_S = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
        a_G = tf.random_normal([1, 4, 4, 3], mean=1, stddev=4)
        J_style_layer = compute_layer_style_cost(a_S, a_G)
        print("J_style_layer = " + str(J_style_layer.eval()))

def test_total_cost():
    tf.reset_default_graph()
    with tf.Session() as test:
        np.random.seed(3)
        J_content = np.random.randn()
        J_style = np.random.randn()
        J = total_cost(J_content, J_style)
        print("J = " + str(J))

相关文章

网友评论

      本文标题:Art Generation with Neural Style

      本文链接:https://www.haomeiwen.com/subject/crfhfqtx.html