美文网首页
P9-P13多元函数微积分

P9-P13多元函数微积分

作者: 陈文瑜 | 来源:发表于2019-10-01 22:38 被阅读0次

    解析几何

    多元函数 基本概念

    • 二元函数
      z = f(x,y)
    • 几何意义就是一个曲面
    • 二元函数极限
      \lim_{x \rightarrow x_0,y \rightarrow y_0}f(x,y)
    • 以任意方式逼近(x_0,y_0)

    偏导数

    • 导数定义
      \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim _{\Delta x \rightarrow 0} \frac {f(x_0 + \Delta x)-f(x_0)}{\Delta x}

    • x的偏导数(y不变)
      \lim_{\Delta x \rightarrow 0} \frac {\Delta_x Z}{\Delta x} = \lim _{\Delta x \rightarrow 0} \frac {f(x_0 +\Delta x,y_0) - f(x_0,y_0)}{\Delta x}
      f_x^\prime (x_0,y_0) \quad \frac {\partial f(x_0,y_0)}{\partial x}

    • 二阶偏导
      \frac {\partial}{\partial x}({\frac {\partial z}{\partial x})} = \frac {\partial^2 z}{\partial x^2} = z_{xx}^{\prime \prime} = f _{xx}^{\prime \prime}(x,y)

    全微分

    • 偏导数
    • 偏增量
    • 全增量
      \Delta z = f(x+\Delta x,y+\Delta y)-f(x,y)
    • 全增量面积近似
      \Delta S = (x+\Delta x)(y +\Delta y)-xy \approx y\Delta x + x\Delta y
    • 全微分
      dz = f^\prime_x dx +f^\prime _y dy
    • 偏微分
      d_x z \quad d_y z
    • 三元 u = f(x,y,z)
      du = f^\prime _x dx +f^\prime _y dy +f^\prime _z dz

    多元复合函数求导

    z = f(x,y) \quad z_x^\prime \quad z_y^\prime
    z=f(u,v) \quad u = \phi (x,y) \quad v=\phi(x,y)
    z \rightarrow u\rightarrow x \quad \quad z \rightarrow u \rightarrow y
    z \rightarrow v\rightarrow x \quad \quad z \rightarrow v \rightarrow y

    \frac {\partial z}{\partial x} = \frac {\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}

    \frac {\partial z}{\partial y} = \frac {\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial y}

    • 举一个栗子
      z = uv +sint \quad u=e^t \quad v=cost
      分析
      z \rightarrow u\rightarrow t \quad \quad z \rightarrow v \rightarrow t \quad z \rightarrow t \rightarrow t
      求解
      \frac{dz}{dt} = \frac {\partial z}{\partial u}\frac {du}{dt} +\frac {\partial z}{\partial v} \frac{\partial v}{\partial t} + \frac {\partial z}{\partial t}
    • 理解 z=f(u,x,y) \quad u=\phi (x,y)
      \frac {\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac {\partial f}{\partial x}

    二阶偏导

    • 表达方式
      \frac {\partial ^2 z}{\partial x^2} \quad \frac {\partial ^2 z}{\partial x \partial y}
    • 栗子
      z=f(xy,x^2+y^2) \quad z =f(u,v) \quad u=xy \quad v = x^2+y^2
      注意事项
      f^\prime _u \quad f^\prime _v 任然是u \quad v 的函数
      也就是
      \frac {\partial f_u^\prime}{\partial x} = f_{uu}^{\prime \prime} \frac {\partial u}{\partial x} + f_{uv}^{\prime \prime} \frac {\partial v}{\partial x}
    • 求解
      \frac {\partial z}{\partial x} = f_u^\prime \frac {\partial u}{\partial x} + f_v^\prime \frac {\partial v}{\partial x} = f_u ^\prime y + f_v ^\prime 2x
      \frac {\partial ^2 z}{\partial x^2} = ....

    隐函数求导

    F(x,y) = 0 右边为0

    • 求解过程
      F(x,f(x)) =0
      \frac {\partial F}{\partial x} + \frac {\partial F}{\partial y} \frac {dy}{dx} = 0
      \frac {dy}{dx} = - \frac {\frac {\partial F}{\partial x}}{\frac {\partial F}{\partial y}} = - \frac {F_x ^\prime}{F _y ^\prime}

    • 再来一个三元的
      F(x,y,z) = 0
      \frac {\partial z}{\partial x} = - \frac {F _x ^\prime}{F_z ^\prime}

    求极值

    朗格朗日中值定理

    • 函数在条件下的极值

    相关文章

      网友评论

          本文标题:P9-P13多元函数微积分

          本文链接:https://www.haomeiwen.com/subject/csclpctx.html