美文网首页
深入分析 weak

深入分析 weak

作者: mtry | 来源:发表于2020-04-08 20:21 被阅读0次

    写在前面

    weak 的主要作用:用 weak 描述修饰或者所引用对象的计数器不会加一,并且会在引用的对象被释放的时候自动被设置为nil,很方便的避免野指针;也经常用于解决循环引用问题。

    本篇文章主要是研究 weak 内部具体是怎么实现的。

    编译过程

    先从一个简单的例子开始

    + (void)test
    {
        id obj = [NSObject new];
        __weak id weakObj = obj;
        if (weakObj)
        {
            
        }
    }
    

    通过 clang 命令,查看 IR 中间代码 clang -S -fobjc-arc -emit-llvm ARCObject.m -o ARCObject.txt

    define internal void @"\01+[ARCObject test]"(i8*, i8*) #0 {
      %3 = alloca i8*, align 8
      %4 = alloca i8*, align 8
      %5 = alloca i8*, align 8
      %6 = alloca i8*, align 8
      store i8* %0, i8** %3, align 8
      store i8* %1, i8** %4, align 8
      %7 = load %struct._class_t*, %struct._class_t** @"OBJC_CLASSLIST_REFERENCES_$_", align 8
      %8 = bitcast %struct._class_t* %7 to i8*
      %9 = call i8* @objc_opt_new(i8* %8)
      %10 = bitcast i8* %9 to %0*
      %11 = bitcast %0* %10 to i8*
      store i8* %11, i8** %5, align 8
      %12 = load i8*, i8** %5, align 8
      %13 = call i8* @llvm.objc.initWeak(i8** %6, i8* %12) #1
      %14 = call i8* @llvm.objc.loadWeakRetained(i8** %6) #1
      call void @llvm.objc.release(i8* %14) #1, !clang.imprecise_release !9
      %15 = icmp ne i8* %14, null
      br i1 %15, label %16, label %17
    
    16:                                               ; preds = %2
      br label %17
    
    17:                                               ; preds = %16, %2
      call void @llvm.objc.destroyWeak(i8** %6) #1
      call void @llvm.objc.storeStrong(i8** %5, i8* null) #1
      ret void
    }
    

    整理之后

    + (void)test
    {
        id obj = objc_msgSend(NSObject, @selector(new));
        id weakObj;
        objc_initWeak(&weakObj, obj);
        id tmp = objc_loadWeakRetained(&weakObj);
        if (tmp)
        {
            
        }
        objc_relase(tmp);
        objc_destroyWeak(&weakObj);
        objc_storeStrong(obj, nil);
    }
    

    底层实现

    根据上面的例子,可以依次查看实现

    // 初始化入口部分
    id objc_initWeak(id *location, id newObj)
    {
        if (!newObj) {
            *location = nil;
            return nil;
        }
    
        return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
            (location, (objc_object*)newObj);
    }
    
    // 主动移除指针
    void objc_destroyWeak(id *location)
    {
        (void)storeWeak<DoHaveOld, DontHaveNew, DontCrashIfDeallocating>
            (location, nil);
    }
    
    // 根据 newObj 的地址,获取一个全局 hash 表,然后把新的指针 *location 追加进去
    template <HaveOld haveOld, HaveNew haveNew, CrashIfDeallocating crashIfDeallocating>
    static id storeWeak(id *location, objc_object *newObj)
    {
        Class previouslyInitializedClass = nil;
        id oldObj;
        SideTable *oldTable;
        SideTable *newTable;
    
        // Acquire locks for old and new values.
        // Order by lock address to prevent lock ordering problems. 
        // Retry if the old value changes underneath us.
     retry:
        if (haveOld) {
            oldObj = *location;
            oldTable = &SideTables()[oldObj];
        } else {
            oldTable = nil;
        }
        if (haveNew) {
            newTable = &SideTables()[newObj];
        } else {
            newTable = nil;
        }
    
        // 加锁防止多线程竞争
        SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
    
        if (haveOld  &&  *location != oldObj) {
            SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
            goto retry;
        }
    
        // Prevent a deadlock between the weak reference machinery
        // and the +initialize machinery by ensuring that no 
        // weakly-referenced object has an un-+initialized isa.
        // 防止多线程的情况下,出现 +initialized 还没调用的情况
        if (haveNew  &&  newObj) {
            Class cls = newObj->getIsa();
            if (cls != previouslyInitializedClass  &&  
                !((objc_class *)cls)->isInitialized()) 
            {
                SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
                _class_initialize(_class_getNonMetaClass(cls, (id)newObj));
    
                // If this class is finished with +initialize then we're good.
                // If this class is still running +initialize on this thread 
                // (i.e. +initialize called storeWeak on an instance of itself)
                // then we may proceed but it will appear initializing and 
                // not yet initialized to the check above.
                // Instead set previouslyInitializedClass to recognize it on retry.
                previouslyInitializedClass = cls;
    
                goto retry;
            }
        }
    
        // Clean up old value, if any.
        // 如果是覆盖赋值的时候,把当前指针,从老对象对应的表中
        if (haveOld) {
            weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
        }
    
        // Assign new value, if any.
        // 把当前指针,添加到 newObj 对象对应的表中
        if (haveNew) {
            newObj = (objc_object *)
                weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                      crashIfDeallocating);
            // weak_register_no_lock returns nil if weak store should be rejected
    
            // Set is-weakly-referenced bit in refcount table.
            if (newObj  &&  !newObj->isTaggedPointer()) {
                newObj->setWeaklyReferenced_nolock();
            }
    
            // Do not set *location anywhere else. That would introduce a race.
            *location = (id)newObj;
        }
        else {
            // No new value. The storage is not changed.
        }
        
        SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
    
        return (id)newObj;
    }
    
    // 获取 weak 指针,指向的对象
    id objc_loadWeakRetained(id *location)
    {
        id obj;
        id result;
        Class cls;
    
        SideTable *table;
        
     retry:
        // fixme std::atomic this load
        obj = *location;
        if (!obj) return nil;
        if (obj->isTaggedPointer()) return obj;
        
        table = &SideTables()[obj];
        
        table->lock();
        if (*location != obj) {
            table->unlock();
            goto retry;
        }
        
        result = obj;
    
        cls = obj->ISA();
        if (! cls->hasCustomRR()) {
            // Fast case. We know +initialize is complete because
            // default-RR can never be set before then.
            assert(cls->isInitialized());
            if (! obj->rootTryRetain()) {
                result = nil;
            }
        }
        else {
            // Slow case. We must check for +initialize and call it outside
            // the lock if necessary in order to avoid deadlocks.
            if (cls->isInitialized() || _thisThreadIsInitializingClass(cls)) {
                BOOL (*tryRetain)(id, SEL) = (BOOL(*)(id, SEL))
                    class_getMethodImplementation(cls, SEL_retainWeakReference);
                if ((IMP)tryRetain == _objc_msgForward) {
                    result = nil;
                }
                else if (! (*tryRetain)(obj, SEL_retainWeakReference)) {
                    result = nil;
                }
            }
            else {
                table->unlock();
                _class_initialize(cls);
                goto retry;
            }
        }
            
        table->unlock();
        return result;
    }
    
    image

    在不看具体实现细节的情况下,还是很好理解的,给一个 weak 指针赋值,其实就是把这个 weak 指针加到这个对象的 weak_table 中去。

    实现细节

    关于 SideTable

    struct SideTable {
        // 自旋锁
        spinlock_t slock;
        // 引用计算表
        RefcountMap refcnts;
        // weak指针表
        weak_table_t weak_table;
        
        // 构造函数
        SideTable() {
            memset(&weak_table, 0, sizeof(weak_table));
        }
        
        // 析构函数
        ~SideTable() {
            _objc_fatal("Do not delete SideTable.");
        }
    
        void lock() { slock.lock(); }
        void unlock() { slock.unlock(); }
        void forceReset() { slock.forceReset(); }
    
        // Address-ordered lock discipline for a pair of side tables.
        // 模板函数
        template<HaveOld, HaveNew>
        static void lockTwo(SideTable *lock1, SideTable *lock2);
        template<HaveOld, HaveNew>
        static void unlockTwo(SideTable *lock1, SideTable *lock2);
    };
    
    // 对 weak_entry_t 列表的封装
    struct weak_table_t {
        weak_entry_t *weak_entries;
        size_t    num_entries;
        uintptr_t mask;
        uintptr_t max_hash_displacement;
    };
    
    // 一个列表
    typedef objc_object ** weak_referrer_t;
    struct weak_entry_t {
        DisguisedPtr<objc_object> referent;
        union {
            struct {
                weak_referrer_t *referrers;
                // 位域为 2,uintptr_t 为无符号,所以 out_of_line_ness 最大值为二进制 11,十进制为 3
                uintptr_t        out_of_line_ness : 2;
                // 位域为 62,num_refs 的最大值为 2^62 - 1
                uintptr_t        num_refs : PTR_MINUS_2;
                uintptr_t        mask;
                uintptr_t        max_hash_displacement;
            };
            struct {
                // out_of_line_ness field is low bits of inline_referrers[1]
                weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
            };
        };
    
        bool out_of_line() {
            return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
        }
    
        weak_entry_t& operator=(const weak_entry_t& other) {
            memcpy(this, &other, sizeof(other));
            return *this;
        }
    
        weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
            : referent(newReferent)
        {
            inline_referrers[0] = newReferrer;
            for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
                inline_referrers[i] = nil;
            }
        }
    };
    

    添加函数 weak_register_no_lock

    // 在 weak_table 中,添加 referent_id 对象的 weak 指针 referrer_id
    id weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                            id *referrer_id, bool crashIfDeallocating)
    {
        objc_object *referent = (objc_object *)referent_id;
        objc_object **referrer = (objc_object **)referrer_id;
    
        if (!referent  ||  referent->isTaggedPointer()) return referent_id;
    
        // 确保要新指向的对象是合法的
        bool deallocating;
        if (!referent->ISA()->hasCustomRR()) {
            deallocating = referent->rootIsDeallocating();
        }
        else {
            BOOL (*allowsWeakReference)(objc_object *, SEL) = 
                (BOOL(*)(objc_object *, SEL))
                object_getMethodImplementation((id)referent, 
                                               SEL_allowsWeakReference);
            if ((IMP)allowsWeakReference == _objc_msgForward) {
                return nil;
            }
            deallocating = !(*allowsWeakReference)(referent, SEL_allowsWeakReference);
        }
    
        if (deallocating) {
            return nil;
        }
    
        // 把 weak 指针添加至列表中
        weak_entry_t *entry;
        if ((entry = weak_entry_for_referent(weak_table, referent))) {
            // 追加一个 weak 指针
            append_referrer(entry, referrer);
        } 
        else {
            // 初始化 new_entry
            weak_entry_t new_entry(referent, referrer);
            // 检测 weak_table 是否需要扩容
            // 扩容条件 weak_table->num_entries >= TABLE_SIZE(weak_table) * 3 / 4
            weak_grow_maybe(weak_table);
            // 初始化 new_entry,插入 weak_table 中
            weak_entry_insert(weak_table, &new_entry);
        }
    
        // Do not set *referrer. objc_storeWeak() requires that the 
        // value not change.
    
        return referent_id;
    }
    
    // 根据对象地址,寻找对应的 weak 指针列表
    static weak_entry_t *weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
    {
        weak_entry_t *weak_entries = weak_table->weak_entries;
    
        if (!weak_entries) return nil;
    
        size_t begin = hash_pointer(referent) & weak_table->mask;
        size_t index = begin;
        size_t hash_displacement = 0;
        while (weak_table->weak_entries[index].referent != referent) {
            index = (index+1) & weak_table->mask;
            if (index == begin) bad_weak_table(weak_table->weak_entries);
            hash_displacement++;
            if (hash_displacement > weak_table->max_hash_displacement) {
                return nil;
            }
        }
        
        return &weak_table->weak_entries[index];
    }
    
    // 把新的 weak 指针添加到 weak_entry_t 列表中
    // 添加策略如下
    // 1:对象的 weak 指针少于 4(WEAK_INLINE_COUNT) 个时候,添加至 inline_referrers 中
    // 2:对象的 weak 指针多于 4 个的时候,则添加至 weak_referrer_t *referrers 列表中
    static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
    {
        if (! entry->out_of_line()) {
            // weak 指针少于 4 个尝试放入 inline_referrers 中
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i] == nil) {
                    entry->inline_referrers[i] = new_referrer;
                    return;
                }
            }
            
            // weak 指针初次超过 4 个,把 inline_referrers 列表中的数据,移到 weak_referrer_t *referrers 列表中
            weak_referrer_t *new_referrers = (weak_referrer_t *)
                calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                new_referrers[i] = entry->inline_referrers[i];
            }
            entry->referrers = new_referrers;
            entry->num_refs = WEAK_INLINE_COUNT;
            entry->out_of_line_ness = REFERRERS_OUT_OF_LINE; // 标记之后 entry->out_of_line() 为 true
            entry->mask = WEAK_INLINE_COUNT-1;
            entry->max_hash_displacement = 0;
        }
    
        // weak 指针超过 4 个之后的添加逻辑
        if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
            return grow_refs_and_insert(entry, new_referrer);
        }
        size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
        size_t index = begin;
        size_t hash_displacement = 0;
        while (entry->referrers[index] != nil) {
            hash_displacement++;
            index = (index+1) & entry->mask;
            if (index == begin) bad_weak_table(entry);
        }
        if (hash_displacement > entry->max_hash_displacement) {
            entry->max_hash_displacement = hash_displacement;
        }
        weak_referrer_t &ref = entry->referrers[index];
        ref = new_referrer;
        entry->num_refs++;
    }
    
    // weak_table 中添加 new_entry
    static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
    {
        weak_entry_t *weak_entries = weak_table->weak_entries;
        
        size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
        size_t index = begin;
        size_t hash_displacement = 0;
        while (weak_entries[index].referent != nil) {
            index = (index+1) & weak_table->mask;
            if (index == begin) bad_weak_table(weak_entries);
            hash_displacement++;
        }
    
        weak_entries[index] = *new_entry;
        weak_table->num_entries++;
    
        if (hash_displacement > weak_table->max_hash_displacement) {
            weak_table->max_hash_displacement = hash_displacement;
        }
    }
    

    移除函数 weak_unregister_no_lock

    // 在 weak_table 表中,删除 referent_id 对象的 weak 指针 referrer_id
    void weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, id *referrer_id)
    {
        objc_object *referent = (objc_object *)referent_id;
        objc_object **referrer = (objc_object **)referrer_id;
    
        weak_entry_t *entry;
    
        if (!referent) return;
    
        if ((entry = weak_entry_for_referent(weak_table, referent))) {
            remove_referrer(entry, referrer);
            bool empty = true;
            if (entry->out_of_line()  &&  entry->num_refs != 0) {
                empty = false;
            }
            else {
                for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                    if (entry->inline_referrers[i]) {
                        empty = false; 
                        break;
                    }
                }
            }
    
            // 如果 referent_id 对象的 weak 指针已经全部释放,则把 entry 列表也删除
            if (empty) {
                weak_entry_remove(weak_table, entry);
            }
        }
    
        // Do not set *referrer = nil. objc_storeWeak() requires that the 
        // value not change.
    }
    
    // 从 entry 列表中删除 old_referrer 指针
    static void remove_referrer(weak_entry_t *entry, objc_object **old_referrer)
    {
        if (! entry->out_of_line()) {
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i] == old_referrer) {
                    entry->inline_referrers[i] = nil;
                    return;
                }
            }
            objc_weak_error();
            return;
        }
    
        size_t begin = w_hash_pointer(old_referrer) & (entry->mask);
        size_t index = begin;
        size_t hash_displacement = 0;
        while (entry->referrers[index] != old_referrer) {
            index = (index+1) & entry->mask;
            if (index == begin) bad_weak_table(entry);
            hash_displacement++;
            if (hash_displacement > entry->max_hash_displacement) {
                objc_weak_error();
                return;
            }
        }
        entry->referrers[index] = nil;
        entry->num_refs--;
    }
    
    static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
    {
        // remove entry
        if (entry->out_of_line()) free(entry->referrers);
        bzero(entry, sizeof(*entry));
    
        weak_table->num_entries--;
    
        // 检测 weak_table 是否可以缩容
        // 缩容条件 TABLE_SIZE(weak_table) >= 1024  && TABLE_SIZE(weak_table) / 16 >= weak_table->num_entries
        weak_compact_maybe(weak_table);
    }
    

    对象销毁,weak指针设置为nil的过程

    可以通过下面代码来分析

    @implementation ARCObject
    
    - (void)dealloc
    {
        NSLog(@"done");
    }
    
    + (void)test
    {
        static __weak id weakObj;
        {
            id obj = [ARCObject new];
            weakObj = obj;
        }
        NSLog(@"%@", weakObj);
    }
    
    @end
    

    根据上面的分析,很容易可以想到会调用 weak_entry_remove 函数,通过断点来观察堆栈信息

    image

    dealloc 函数之后,开始清除对象的 weak 指针。接下来继续看源码

    void _objc_rootDealloc(id obj)
    {
        obj->rootDealloc();
    }
    
    inline void objc_object::rootDealloc()
    {
        if (isTaggedPointer()) return;  // fixme necessary?
    
        if (fastpath(isa.nonpointer  &&  
                     !isa.weakly_referenced  &&  
                     !isa.has_assoc  &&  
                     !isa.has_cxx_dtor  &&  
                     !isa.has_sidetable_rc)) 
        {
            free(this);
        } else {
            object_dispose((id)this);
        }
    }
    
    id object_dispose(id obj)
    {
        if (!obj) return nil;
    
        objc_destructInstance(obj);    
        free(obj);
    
        return nil;
    }
    
    void *objc_destructInstance(id obj) 
    {
        if (obj) {
            // Read all of the flags at once for performance.
            bool cxx = obj->hasCxxDtor();
            bool assoc = obj->hasAssociatedObjects();
    
            // This order is important.
            if (cxx) object_cxxDestruct(obj);
            // 清除关联对象
            if (assoc) _object_remove_assocations(obj);
            // 清除 weak 指针
            obj->clearDeallocating();
        }
    
        return obj;
    }
    
    inline void objc_object::clearDeallocating()
    {
        // nonpointer 表示是否对 isa 指针开启指针优化,1 表示优化,0 表示未优化
        // arm64架构isa占64位,苹果为了优化性能,存储类对象地址只用了33位,剩下的位用来存储一些其它信息
        if (slowpath(!isa.nonpointer)) {
            // Slow path for raw pointer isa.
            sidetable_clearDeallocating();
        }
        else if (slowpath(isa.weakly_referenced  ||  isa.has_sidetable_rc)) {
            // Slow path for non-pointer isa with weak refs and/or side table data.
            clearDeallocating_slow();
        }
    }
    
    NEVER_INLINE void objc_object::clearDeallocating_slow()
    {
        SideTable& table = SideTables()[this];
        table.lock();
        if (isa.weakly_referenced) {
            weak_clear_no_lock(&table.weak_table, (id)this);
        }
        if (isa.has_sidetable_rc) {
            table.refcnts.erase(this);
        }
        table.unlock();
    }
    

    通过上面的中转,移除的关键函数如下

    void weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
    {
        objc_object *referent = (objc_object *)referent_id;
    
        weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
        if (entry == nil) {
            /// XXX shouldn't happen, but does with mismatched CF/objc
            //printf("XXX no entry for clear deallocating %p\n", referent);
            return;
        }
    
        // zero out references
        weak_referrer_t *referrers;
        size_t count;
        
        if (entry->out_of_line()) {
            referrers = entry->referrers;
            count = TABLE_SIZE(entry);
        } 
        else {
            referrers = entry->inline_referrers;
            count = WEAK_INLINE_COUNT;
        }
        
        // 把 referent_id 对象的全部 weak 指针,指向的值置为 nil
        for (size_t i = 0; i < count; ++i) {
            objc_object **referrer = referrers[i];
            if (referrer) {
                if (*referrer == referent) {
                    *referrer = nil;
                }
                else if (*referrer) {
                    objc_weak_error();
                }
            }
        }
        
        weak_entry_remove(weak_table, entry);
    }
    

    思考

    Q:SideTable 是通过对象地址获取的,也就是说,每个对象都对应一个 SideTable,那为什么 weak_table_t 里面又要重复的根据对象地址获取 weak_entry_t 列表?

    A:目的是解决 hash 冲突。

    先看 SideTable 的获取方式

    SideTable *newTable = &SideTables()[newObj];
    
    // reinterpret_cast,是 C++ 里的强制类型转换符
    // 使用格式:reinterpret_cast<type-id> (expression)
    // 它可以把一个指针转换成一个整数,也可以把一个整数转换成一个指针
    // 先把一个指针转换成一个整数,再把该整数转换成原类型的指针,还可以得到原先的指针值
    static StripedMap<SideTable>& SideTables() {
        return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf);
    }
    
    enum { CacheLineSize = 64 };
    
    template<typename T>
    class StripedMap {
        enum { StripeCount = 64 };
    
        struct PaddedT {
            T value alignas(CacheLineSize);
        };
    
        PaddedT array[StripeCount];
    
        static unsigned int indexForPointer(const void *p) {
            uintptr_t addr = reinterpret_cast<uintptr_t>(p);
            return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
        }
    
     public:
        T& operator[] (const void *p) { 
            return array[indexForPointer(p)].value; 
        }
        const T& operator[] (const void *p) const { 
            return const_cast<StripedMap<T>>(this)[p]; 
        }
    
        //...
    };
    

    通过 indexForPointer 这个函数可以知道,每个对象的地址 addr,都会映射为一个小于 StripeCount 值的索引值,这里就会出现一个问题,有可能多个对象的 addr 映射成同一个索引值

    也就是说 SideTable *newTable = &SideTables()[newObj]; 不是一一对应的,会出现多个 newObj 对应一个 newTable

    有了上面的基础,接下来,继续看根据对象地址在 weak_table_t 中寻找 weak_entry_t,重点看 weak_entry_insertweak_entry_for_referent 函数

    static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
    {
        weak_entry_t *weak_entries = weak_table->weak_entries;
    
        // 根据对象地址 hash 一个整数,同时设置为起始位置,既然是 hash 自然也有可能出现冲突
        // hash_displacement 就是来记录,多个对象地址 hash 到同一个值的数量
        size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
        size_t index = begin;
        size_t hash_displacement = 0;
        while (weak_entries[index].referent != nil) {
            index = (index+1) & weak_table->mask;
            if (index == begin) bad_weak_table(weak_entries);
            hash_displacement++;
        }
    
        weak_entries[index] = *new_entry;
        weak_table->num_entries++;
    
        if (hash_displacement > weak_table->max_hash_displacement) {
            weak_table->max_hash_displacement = hash_displacement;
        }
    }
    
    static weak_entry_t *weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
    {
        weak_entry_t *weak_entries = weak_table->weak_entries;
    
        if (!weak_entries) return nil;
    
        // 读取的时候,也采用插入时的 hash 机制
        size_t begin = hash_pointer(referent) & weak_table->mask;
        size_t index = begin;
        size_t hash_displacement = 0;
        while (weak_table->weak_entries[index].referent != referent) {
            index = (index+1) & weak_table->mask;
            if (index == begin) bad_weak_table(weak_table->weak_entries);
            hash_displacement++;
            if (hash_displacement > weak_table->max_hash_displacement) {
                return nil;
            }
        }
        
        return &weak_table->weak_entries[index];
    }
    
    // 根据对象地址 hash 一个整数
    static inline uintptr_t hash_pointer(objc_object *key) {
        return ptr_hash((uintptr_t)key);
    }
    
    static inline uint32_t ptr_hash(uint64_t key) {
        key ^= key >> 4;
        key *= 0x8a970be7488fda55;
        key ^= __builtin_bswap64(key);
        return (uint32_t)key;
    }
    

    小结

    1. 通过对象地址 hash 得到的 SideTable,可能出现多个对象对应同一个 SideTable
    2. SideTable->weak_entries 中寻找 weak_entry_t 时,也是通过对象地址 hash 得到在 weak_entries 列表中的起始索引值,因为有可能存在多个对象,所以也有可能出现多个起始值一样的情况,max_hash_displacement 为 hash 最大冲突值。

    参考资料

    objc4-750.1

    相关文章

      网友评论

          本文标题:深入分析 weak

          本文链接:https://www.haomeiwen.com/subject/csexmhtx.html