【离散数学】图论(七)图的同构

作者: 胖若两人_ | 来源:发表于2017-11-26 10:21 被阅读1308次

    正文之前

    同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若这两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的                         ——Wikipedia

    正文

    1. 简介

    关于图的同构(Isomorphic),最简单的例子就是五边形和五角星了:

    上图中,G1和G2为同构的,因为:

    1. 从G1的结点到G2的结点,存在一个一对一的映上函数 f (one - to - one and onto function f )

    2. 从G1的边到G2的边,存在一个一对一的映上函数 g (one - to - one and onto function g )

    • G1中,边e1与结点a,b相关联,当且仅当(if and only if) G2中边 g(e) 与结点 f(a) 和 f(b) 相关联(E1和结点A,B相关联)。若满足此条件,函数 fg 称为从G1到G2同构映射(Isomorphism)

    2. 判断两图同构

    • 对于某个顺序,如果两个图是同构的,则两个图的邻接矩阵是相同的:

      这两个矩阵对应的是上面的两个图

    3. 判断两图不同构

    • 找到一个特性,是G1具有,而G2不具有的,这个特性称为不变量(invariant),或不变条件

    • 如果G1和G2同构,则两个图都具有此特性,也就是说,如果G1和G2同构,G1具有某性质,则G2也具有此性质

    以此图为例,这两个图是不同构的,因为G1有5条边,G2有6条边。

    到目前为止,还没有人找出能简单检测的同构图具有的不变量,所以需要具体情况具体分析。

    今天就介绍到这里了,下一篇会介绍平面图,谢谢大家!

    相关文章

      网友评论

      • 4e8fd3b4f33e:邻接矩阵不同是不是也可以用来判断图不同构呢?

      本文标题:【离散数学】图论(七)图的同构

      本文链接:https://www.haomeiwen.com/subject/csnqbxtx.html