一 分析
数据的丢失问题,可能出现在生产者、MQ、消费者中,咱们从 RabbitMQ 和 Kafka 分别来分析一下吧。
二 RabbitMQ
rabbitmq-message-lose2.1 RabbitMQ生产者弄丢了数据
生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。RabbitMQ针对生产者丢失数据可以有两种方案解决问题:
-
Plan-A : 此时可以选择用 RabbitMQ 提供的事务功能,就是生产者发送数据之前开启 RabbitMQ 事务
channel.txSelect
,然后发送消息,如果消息没有成功被 RabbitMQ 接收到,那么生产者会收到异常报错,此时就可以回滚事务channel.txRollback
,然后重试发送消息;如果收到了消息,那么可以提交事务channel.txCommit
。
// 开启事务
channel.txSelect
try {
// 这里发送消息
} catch (Exception e) {
channel.txRollback
// 这里再次重发这条消息
}
// 提交事务
channel.txCommit
- Plan-A的缺陷: :RabbitMQ 事务机制(同步)一搞,基本上吞吐量会下来,因为太耗性能。
-
Plan-B : 要确保说写 RabbitMQ 的消息别丢,可以开启
confirm
模式,在生产者那里设置开启confirm
模式之后,你每次写的消息都会分配一个唯一的 id,然后如果写入了 RabbitMQ 中,RabbitMQ 会给你回传一个ack
消息,告诉你说这个消息 ok 了。如果 RabbitMQ 没能处理这个消息,会回调你的一个nack
接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息 id 的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。
RabbitMQ 事务机制与confirm
机制
-
事务机制和
confirm
机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm
机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息 RabbitMQ 接收了之后会异步回调你的一个接口通知你这个消息接收到了。 -
所以一般在生产者这块避免数据丢失,都是用
confirm
机制的。
2.2 RabbitMQ 弄丢了数据
RabbitMQ 自己弄丢了数据,这个你必须开启 RabbitMQ 的持久化,就是消息写入之后会持久化到磁盘,哪怕是 RabbitMQ 自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,RabbitMQ 还没持久化,自己就挂了,可能导致少量数据丢失,但是这个概率较小。
设置持久化有两个步骤:
- 创建 queue 的时候将其设置为持久化
这样就可以保证 RabbitMQ 持久化 queue 的元数据,但是它是不会持久化 queue 里的数据的。 - 第二个是发送消息的时候将消息的
deliveryMode
设置为 2
就是将消息设置为持久化的,此时 RabbitMQ 就会将消息持久化到磁盘上去。
必须要同时设置这两个持久化才行,RabbitMQ 哪怕是挂了,再次重启,也会从磁盘上重启恢复 queue,恢复这个 queue 里的数据。
注意,哪怕是你给 RabbitMQ 开启了持久化机制,也有一种可能,就是这个消息写到了 RabbitMQ 中,但是还没来得及持久化到磁盘上,结果不巧,此时 RabbitMQ 挂了,就会导致内存里的一点点数据丢失。
所以,持久化可以跟生产者那边的 confirm
机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者 ack
了,所以哪怕是在持久化到磁盘之前,RabbitMQ 挂了,数据丢了,生产者收不到 ack
,你也是可以自己重发的。
2.3 RabbitMQ消费端弄丢了数据
消费者丢失了数据,主要是因为消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,RabbitMQ 认为你都消费了,这数据就丢了。
这个时候得用 RabbitMQ 提供的 ack
机制,简单来说,就是你必须关闭 RabbitMQ 的自动 ack
,可以通过一个 api 来调用就行,然后每次你自己代码里确保处理完的时候,再在程序里 ack
一把。这样的话,如果你还没处理完,不就没有 ack
了?那 RabbitMQ 就认为你还没处理完,这个时候 RabbitMQ 会把这个消费分配给别的 consumer 去处理,消息是不会丢的。
2.4 总结
RabbitMQ 消息丢失及对应解决方案:
- 生产者丢失:
- 方案1:开启RabbitMQ事务机制(同步,影响性能,不推荐)。
- 方案2:开启RabbitMQ confirm机制(异步,推荐)
- RabbitMQ本身丢失:
- 开启RabbitMQ持久化机制。
- 配合生产者那边的confirm机制保证小时持久化后才进行ack.
- 消费者丢失:
- 关闭RabbitMQ自动ACK机制,在程序显示调用API进行确认。
三 Kafka
3.1 Kafka消费端弄丢了数据
- 唯一可能导致消费者弄丢数据的情况,就是说,你消费到了这个消息,然后消费者那边自动提交了 offset,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。
- Kafka 会自动提交 offset,那么只要关闭自动提交 offset,在处理完之后自己手动提交 offset,就可以保证数据不会丢。但是此时确实还是可能会有重复消费,比如你刚处理完,还没提交 offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。
3.2 Kafka 弄丢了数据
这块比较常见的一个场景,就是 Kafka 某个 broker 宕机,然后重新选举 partition 的 leader。大家想想,要是此时其他的 follower 刚好还有些数据没有同步,结果此时 leader 挂了,然后选举某个 follower 成 leader 之后,不就少了一些数据?这就丢了一些数据啊。
所以此时一般是要求起码设置如下 4 个参数:
- 给 topic 设置
replication.factor
参数:这个值必须大于 1,要求每个 partition 必须有至少 2 个副本。 - 在 Kafka 服务端设置
min.insync.replicas
参数:这个值必须大于 1,这个是要求一个 leader 至少感知到有至少一个 follower 还跟自己保持联系,没掉队,这样才能确保 leader 挂了还有一个 follower 吧。 - 在 producer 端设置
acks=all
:这个是要求每条数据,必须是写入所有 replica 之后,才能认为是写成功了。 - 在 producer 端设置
retries=MAX
(很大很大很大的一个值,无限次重试的意思):这个是要求一旦写入失败,就无限重试,卡在这里了。
我们生产环境就是按照上述要求配置的,这样配置之后,至少在 Kafka broker 端就可以保证在 leader 所在 broker 发生故障,进行 leader 切换时,数据不会丢失。
3.3 生产者会不会弄丢数据
如果按照上述的思路设置了 acks=all
,一定不会丢,要求是,你的 leader 接收到消息,所有的 follower 都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。
网友评论