美文网首页工作生活
随机森林(RF)的原理

随机森林(RF)的原理

作者: 瞎了吗 | 来源:发表于2019-07-02 10:43 被阅读0次

    随机森林(RF)的原理

    集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系。另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合。本文就对集成学习中Bagging与随机森林算法做一个总结。
    随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的时代很有诱惑力。

    bagging的原理

    bagging集成学习方法可以利用下图说明:

    在这里插入图片描述
    从上图可以看出,Bagging的弱学习器之间的确没有boosting那样的联系。它的特点在“随机采样”。那么什么是随机采样?
    随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回。也就是说,之前采集到的样本在放回后有可能继续被采集到。对于我们的Bagging算法,一般会随机采集和训练集样本数m一样个数的样本。这样得到的采样集和训练集样本的个数相同,但是样本内容不同。如果我们对有m个样本训练集做T次的随机采样,则由于随机性,T个采样集各不相同。注意到这和GBDT的子采样是不同的。GBDT的子采样是无放回采样,而Bagging的子采样是放回采样。
    对于一个样本,它在某一次含m个样本的训练集的随机采样中,每次被采集到的概率是1/m。不被采集到的概率为1−1/m。如果m次采样都没有被采集中的概率是(1−1/m)m。当m→∞时,(1−1/m)m→ 1/e≃0.368。也就是说,在bagging每轮随机采样中,训练集中大约有36.8%的数据没有被采样集采集中。
    对于这部分大约36.8%的没有被采样到的数据,我们常常称之为袋外数据(Out Of Bag, 简称OOB)。这些数据没有参与训练集模型的拟合,因此可以用来检测模型的泛化能力。
    bagging对于弱学习器没有限制,这和Adaboost一样。但是最常用的一般也是决策树和神经网络。
    bagging的集合策略也比较简单,对于分类问题,通常使用简单投票法,得到最多票数的类别或者类别之一为最终的模型输出。对于回归问题,通常使用简单平均法,对T个弱学习器得到的回归结果进行算术平均得到最终的模型输出。
    由于Bagging算法每次都进行采样来训练模型,因此泛化能力很强,对于降低模型的方差很有作用。当然对于训练集的拟合程度就会差一些,也就是模型的偏倚会大一些。

    bagging算法流程

    上面我们对bagging算法的原理做了总结,这里就对bagging算法的流程做一个总结。相对于Boosting系列的Adaboost和GBDT,bagging算法要简单的多。
    输入为样本集D={(x1,y1),(x2,y2),...(xm,ym)},弱学习器算法, 弱分类器迭代次数T。输出为最终的强分类器f(x).
    1)对于t=1,2...,T:

    • 对训练集进行第t次随机采样,共采集m次,得到包含m个样本的采样集Dm
    • 用采样集Dm训练m个弱学习器Gm(x)
    1. 如果是分类算法预测,则T个弱学习器投出最多票数的类别或者类别之一为最终类别。如果是回归算法,T个弱学习器得到的回归结果进行算术平均得到的值为最终的模型输出。

    随机森林算法

    理解了bagging算法,随机森林(Random Forest,以下简称RF)就好理解了。它是Bagging算法的进化版,也就是说,它的思想仍然是bagging,但是进行了独有的改进。我们现在就来看看RF算法改进了什么。   
    首先,RF使用了CART决策树作为弱学习器,这让我们想到了梯度提升树GBDT。第二,在使用决策树的基础上,RF对决策树的建立做了改进,对于普通的决策树,我们会在节点上所有的n个样本特征中选择一个最优的特征来做决策树的左右子树划分,但是RF通过随机选择节点上的一部分样本特征,这个数字小于n,假设为nsub,然后在这些随机选择的nsub个样本特征中,选择一个最优的特征来做决策树的左右子树划分。这样进一步增强了模型的泛化能力。

    如果nsub=nnsub=n,则此时RF的CART决策树和普通的CART决策树没有区别。nsubnsub越小,则模型越健壮,当然此时对于训练集的拟合程度会变差。也就是说nsubnsub越小,模型的方差会减小,但是偏倚会增大。在实际案例中,一般会通过交叉验证调参获取一个合适的nsubnsub的值。
    除了上面两点,RF和普通的bagging算法没有什么不同, 下面简单总结下RF的算法。
    输入为样本集D={(x1,y1),(x2,y2),...(xm,ym)},弱分类器迭代次数T。输出为最终的强分类器f(x):

    1. 对于t=1,2...,T:
    • a)对训练集进行第t次随机采样,共采集m次,得到包含m个样本的采样集Dm
    • b)用采样集Dm训练m个决策树模型Gm(x),在训练决策树模型的节点的时候, 在节点上所有的样本特征中选择一部分样本特征,在这些随机选择的部分样本特征中选择一个最优的特征来做决策树的左右子树划分
    1. 如果是分类算法预测,则T个弱学习器投出最多票数的类别或者类别之一为最终类别。如果是回归算法,T个弱学习器得到的回归结果进行算术平均得到的值为最终的模型输出。

    随机森林算法推广

    随机森林算法推广
    由于RF在实际应用中的良好特性,基于RF,有很多变种算法,应用也很广泛,不光可以用于分类回归,还可以用于特征转换,异常点检测等。下面对于这些RF家族的算法中有代表性的做一个总结。

    1. extra trees
      extra trees是RF的一个变种, 原理几乎和RF一模一样,仅有区别有:
      1)对于每个决策树的训练集,RF采用的是随机采样bootstrap来选择采样集作为每个决策树的训练集,而extra trees一般不采用随机采样,即每个决策树采用原始训练集。
      2)在选定了划分特征后,RF的决策树会基于信息增益,基尼系数,均方差之类的原则,选择一个最优的特征值划分点,这和传统的决策树相同。但是extra trees比较的激进,他会随机的选择一个特征值来划分决策树。
      从第二点可以看出,由于随机选择了特征值的划分点位,而不是最优点位,这样会导致生成的决策树的规模一般会大于RF所生成的决策树。也就是说,模型的方差相对于RF进一步减少,但是偏倚相对于RF进一步增大。在某些时候,extra trees的泛化能力比RF更好。
      Bootstrap(自助法)补充:
      Bootstrap是一种抽样方法
      核心思想
      在这里插入图片描述
      Bootstrap又称自展法,是用小样本估计总体值的一种非参数方法,在进化和生态学研究中应用十分广泛。
      Bootstrap的思想,是生成一系列bootstrap伪样本,每个样本是初始数据有放回抽样。通过对伪样本的计算,获得统计量的分布。
      栗子:我要统计鱼塘里面的鱼的条数,怎么统计呢?假设鱼塘总共有鱼1000条,我是开了上帝视角的,但是你是不知道里面有多少。
      步骤:
    • 1.承包鱼塘,不让别人捞鱼(规定总体分布不变)。
    • 2.自己捞鱼,捞100条,都打上标签(构造样本)
    • 3.把鱼放回鱼塘,休息一晚(使之混入整个鱼群,确保之后抽样随机)
    • 4.开始捞鱼,每次捞100条,数一下,自己昨天标记的鱼有多少条,占比多少(一次重采样取分布)。
    • 5.重复3,4步骤n次。建立分布。

    假设一下,第一次重新捕鱼100条,发现里面有标记的鱼12条,记下为12%,放回去,再捕鱼100条,发现标记的为9条,记下9%,重复重复好多次之后,假设取置信区间95%,你会发现,每次捕鱼平均在10条左右有标记,所以,我们可以大致推测出鱼塘有1000条左右。其实是一个很简单的类似于一个比例问题。这也是因为提出者Efron给统计学顶级期刊投稿的时候被拒绝的理由--"太简单"。这也就解释了,为什么在小样本的时候,bootstrap效果较好,你这样想,如果我想统计大海里有多少鱼,你标记100000条也没用啊,因为实际数量太过庞大,你取的样本相比于太过渺小,最实际的就是,你下次再捕100000的时候,发现一条都没有标记,,,这特么就尴尬了.

    Bootstrap经典语录

    • Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
    • 就是一个在自身样本重采样的方法来估计真实分布的问题
    • 当我们不知道样本分布的时候,bootstrap方法最有用。
    • 整合多个弱分类器,成为一个强大的分类器。
    1. Totally Random Trees Embedding
      Totally Random Trees Embedding(以下简称 TRTE)是一种非监督学习的数据转化方法。它将低维的数据集映射到高维,从而让映射到高维的数据更好的运用于分类回归模型。我们知道,在支持向量机中运用了核方法来将低维的数据集映射到高维,此处TRTE提供了另外一种方法。
      TRTE在数据转化的过程也使用了类似于RF的方法,建立T个决策树来拟合数据。当决策树建立完毕以后,数据集里的每个数据在T个决策树中叶子节点的位置也定下来了。比如我们有3颗决策树,每个决策树有5个叶子节点,某个数据特征xx划分到第一个决策树的第2个叶子节点,第二个决策树的第3个叶子节点,第三个决策树的第5个叶子节点。则x映射后的特征编码为(0,1,0,0,0, 0,0,1,0,0, 0,0,0,0,1), 有15维的高维特征。这里特征维度之间加上空格是为了强调三颗决策树各自的子编码。
      映射到高维特征后,可以继续使用监督学习的各种分类回归算法了。

    随机森林小结

    作为一个可以高度并行化的算法,RF在大数据时候大有可为。这里也对常规的随机森林算法的优缺点做一个总结。
    RF的主要优点有:
    1)训练可以高度并行化,对于大数据时代的大样本训练速度有优势。
    2)由于可以随机选择决策树节点划分特征,这样在样本特征维度很高的时候,仍然能高效的训练模型。
    3)在训练后,可以给出各个特征对于输出的重要性
    4)由于采用了随机采样,训练出的模型的方差小,泛化能力强。
    5)相对于Boosting系列的Adaboost和GBDT, RF实现比较简单。
    6)对部分特征缺失不敏感。
    RF的主要缺点有:
    1)在某些噪音比较大的样本集上,RF模型容易陷入过拟合。
    2)取值划分比较多的特征容易对RF的决策产生更大的影响,从而影响拟合的模型的效果。

    原文

    相关文章

      网友评论

        本文标题:随机森林(RF)的原理

        本文链接:https://www.haomeiwen.com/subject/cszacctx.html