美文网首页
优化算法-1.粒子群算法实现(python)

优化算法-1.粒子群算法实现(python)

作者: lk311 | 来源:发表于2024-08-15 17:20 被阅读0次

    本文基于 优化算法笔记(三)粒子群算法(1) - 简书 (jianshu.com) 进行实现,建议先看原理。

    输出结果如下

    PSO.gif

    实现代码如下

    # 粒子群算法
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    from PIL import Image
    import shutil
    import os
    import glob 
    
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
    
    def plot_jpg(start, end, point_g, point_best, err, m, n, lower, upper, W, title):
        plt.figure(figsize=(8, 12))
        gs = gridspec.GridSpec(3, 2)
        
        ax1 = plt.subplot(gs[:2, :2])
        ax1.scatter(start[:, 0], start[:, 1], alpha=0.3, color='green', s=20, label='当前位置')  # 当前位置
        ax1.scatter(point_g[0], point_g[1], alpha=1, color='blue', s=20, label='当前最优点')  # 全局最优点
        ax1.scatter(point_best[0], point_best[1], alpha=0.3, color='red', label='目标点')  # 最优点
    
        for i in range(n):
            ax1.text(start[i][0]-5, start[i][1], f'{i}', alpha=0.3, fontsize=10, color='red')
            ax1.plot([start[i][0], end[i][0]], [start[i][1], end[i][1]], alpha=0.3, color='gray')
        
        ax1.grid(True, color='gray', linestyle='-.', linewidth=0.5)
        ax1.set_xlim(lower[0]*1.2, upper[0]*1.2)
        ax1.set_ylim(lower[1]*1.2, upper[1]*1.2)
        ax1.set_xlabel(f'iter:{m}  W: {W:.8f}  dist: {err[-1]:.8f}'  )
        ax1.set_title(title)
        ax1.legend(loc='lower right', bbox_to_anchor=(1, 0), ncol=1)
        
        ax2 = plt.subplot(gs[2, :])
        ax2.plot(range(len(err)), err, marker='o', markersize=5)
        ax2.grid(True, color='gray', linestyle='-.', linewidth=0.5)
        ax2.set_xlim(0, max_iter)
        ax2.set_ylim(0, np.ceil(max(err)))
        ax2.set_xticks(range(0, max_iter, 5))
        
        plt.savefig(rf'./tmp/tmp_{m:04}.png')
        plt.close()
    
    
    # 目标函数
    def target(point):
        return (point[0]-a)**2 + (point[1]-b)**2
    
    # 速度限制
    def limit_speed(speed, maxV):
        rate = ((speed[:, 0]**2 + speed[:, 1]**2)**0.5)/maxV
        rate = np.where(rate > 1, rate, 1)
        for t in range(d):
            speed[:, t] = speed[:, t]/rate
        return speed
    
    def PSO(C1, C2, W, maxV):
        # 初始化粒子位置
        start = np.random.random(size=(n, d))
        for _ in range(d):
            start[:, _] = start[:, _]*(upper_lim[_]-lower_lim[_])+lower_lim[_]
        # 初始化粒子速度
        speed = np.random.random(size=(n, d))
        for _ in range(d):
            speed[:, _] = speed[:, _]*(upper_lim[_]-lower_lim[_])+lower_lim[_]
        # 速度限制
        speed = limit_speed(speed, maxV)  
    
        if os.path.exists(tmp_path):
            shutil.rmtree(tmp_path) 
        os.makedirs(tmp_path, exist_ok=True)
    
        errors = [target(min(start.tolist(), key=target))**0.5]
        for _ in range(max_iter):
            # 下次目标位置
            r1, r2 = np.random.random(2)
            # 全局最优点
            point_g = min(start.tolist(), key=target)
            # 各粒子历史最优点
            if _ == 0:
                point_p = start.copy()
            else:
                point_p = np.array([min([point_p[i], end[i]], key=target) for i in range(n)])
            # 更新速度
            speed = W*speed + r1*C1*(point_p - start) + r2*C2*(point_g - start)
            speed = limit_speed(speed, maxV)  # 速度限制 
            # 更新位置
            end = start + speed
            
            title = f'PSO\nC1:{C1} C2:{C2} n:{n} maxV:{maxV} max_iter:{max_iter}'
            plot_jpg(start, end, point_g, point_best, errors,  _, n, lower_lim, upper_lim, W, title)
            # 更新开始位置
            start = end
            errors.append(target(min(start.tolist(), key=target))**0.5)
            # 惯性衰减
            # W *= 0.8
            W -= step
        plot_jpg(start, end, point_g, point_best, errors,  max_iter, n, lower_lim, upper_lim, W, title)
        return errors
    
    
    C1 = 2  # C1:自我学习因子
    C2 = 2  # C2:全局学习因子
    W = 0.5  # W:惯性系数
    maxV = 20  # 最大速率
    
    n = 10  # 粒子数量
    d = 2  # 粒子维度
    max_iter = 50  # 迭代次数
    
    step = W/(max_iter)  # 惯性系数衰减
    
    # 搜索区间 
    lower_lim = [-100, -100]
    upper_lim = [100, 100]
    
    # 目标点
    a, b = 0, 0
    point_best = (a, b)
    
    # 临时文件路径
    tmp_path = r'./tmp/'
    
    err = PSO(C1, C2, W, maxV)
    
    # png 转 gif
    images = [Image.open(png) for png in glob.glob(os.path.join(tmp_path, '*.png'))]
    im = images.pop(0)
    im.save(r"./PSO.gif", save_all=True, append_images=images, duration=500)
    
    im = Image.open(r"./PSO.gif")
    im.show()
    im.close()
    

    相关文章

      网友评论

          本文标题:优化算法-1.粒子群算法实现(python)

          本文链接:https://www.haomeiwen.com/subject/cumekjtx.html