美文网首页
自定义数据集图像分类-Pytorch

自定义数据集图像分类-Pytorch

作者: zelda2333 | 来源:发表于2020-02-18 17:47 被阅读0次

    代码来自:龙良曲老师
    课程:https://study.163.com/course/introduction/1208894818.htm?share=1&shareId=3314534

    utils.py

    from    matplotlib import pyplot as plt
    import  torch
    from    torch import nn
    
    class Flatten(nn.Module):
    
        def __init__(self):
            super(Flatten, self).__init__()
    
        def forward(self, x):
            shape = torch.prod(torch.tensor(x.shape[1:])).item()
            return x.view(-1, shape)
    
    
    def plot_image(img, label, name):
    
        fig = plt.figure()
        for i in range(6):
            plt.subplot(2, 3, i + 1)
            plt.tight_layout()
            plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none')
            plt.title("{}: {}".format(name, label[i].item()))
            plt.xticks([])
            plt.yticks([])
        plt.show()
    

    pokemon.py

    import  torch
    import  os, glob
    import  random, csv
    
    from    torch.utils.data import Dataset, DataLoader
    
    from    torchvision import transforms
    from    PIL import Image
    
    
    class Pokemon(Dataset):
    
        def __init__(self, root, resize, mode):
            super(Pokemon, self).__init__()
    
            self.root = root
            self.resize = resize
    
            self.name2label = {} # "sq...":0
            for name in sorted(os.listdir(os.path.join(root))):
                if not os.path.isdir(os.path.join(root, name)):
                    continue
    
                self.name2label[name] = len(self.name2label.keys())
    
            # print(self.name2label)
    
            # image, label
            self.images, self.labels = self.load_csv('images.csv')
    
            if mode=='train': # 60%
                self.images = self.images[:int(0.6*len(self.images))]
                self.labels = self.labels[:int(0.6*len(self.labels))]
            elif mode=='val': # 20% = 60%->80%
                self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]
                self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]
            else: # 20% = 80%->100%
                self.images = self.images[int(0.8*len(self.images)):]
                self.labels = self.labels[int(0.8*len(self.labels)):]
    
    
    
    
    
        def load_csv(self, filename):
    
            if not os.path.exists(os.path.join(self.root, filename)):
                images = []
                for name in self.name2label.keys():
                    # 'pokemon\\mewtwo\\00001.png
                    images += glob.glob(os.path.join(self.root, name, '*.png'))
                    images += glob.glob(os.path.join(self.root, name, '*.jpg'))
                    images += glob.glob(os.path.join(self.root, name, '*.jpeg'))
    
                # 1167, 'pokemon\\bulbasaur\\00000000.png'
                print(len(images), images)
    
                random.shuffle(images)
                with open(os.path.join(self.root, filename), mode='w', newline='') as f:
                    writer = csv.writer(f)
                    for img in images: # 'pokemon\\bulbasaur\\00000000.png'
                        name = img.split(os.sep)[-2]
                        label = self.name2label[name]
                        # 'pokemon\\bulbasaur\\00000000.png', 0
                        writer.writerow([img, label])
                    print('writen into csv file:', filename)
    
            # read from csv file
            images, labels = [], []
            with open(os.path.join(self.root, filename)) as f:
                reader = csv.reader(f)
                for row in reader:
                    # 'pokemon\\bulbasaur\\00000000.png', 0
                    img, label = row
                    label = int(label)
    
                    images.append(img)
                    labels.append(label)
    
            assert len(images) == len(labels)
    
            return images, labels
    
    
    
        def __len__(self):
    
            return len(self.images)
    
    
        def denormalize(self, x_hat):
    
            mean = [0.485, 0.456, 0.406]
            std = [0.229, 0.224, 0.225]
    
            # x_hat = (x-mean)/std
            # x = x_hat*std = mean
            # x: [c, h, w]
            # mean: [3] => [3, 1, 1]
            mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)
            std = torch.tensor(std).unsqueeze(1).unsqueeze(1)
            # print(mean.shape, std.shape)
            x = x_hat * std + mean
    
            return x
    
    
        def __getitem__(self, idx):
            # idx~[0~len(images)]
            # self.images, self.labels
            # img: 'pokemon\\bulbasaur\\00000000.png'
            # label: 0
            img, label = self.images[idx], self.labels[idx]
    
            tf = transforms.Compose([
                lambda x:Image.open(x).convert('RGB'), # string path= > image data
                transforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),
                transforms.RandomRotation(15),
                transforms.CenterCrop(self.resize),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
            ])
    
            img = tf(img)
            label = torch.tensor(label)
    
    
            return img, label
    
    
    
    
    
    def main():
    
        import  visdom
        import  time
        import  torchvision
    
        viz = visdom.Visdom()
    
        # tf = transforms.Compose([
        #                 transforms.Resize((64,64)),
        #                 transforms.ToTensor(),
        # ])
        # db = torchvision.datasets.ImageFolder(root='pokemon', transform=tf)
        # loader = DataLoader(db, batch_size=32, shuffle=True)
        #
        # print(db.class_to_idx)
        #
        # for x,y in loader:
        #     viz.images(x, nrow=8, win='batch', opts=dict(title='batch'))
        #     viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
        #
        #     time.sleep(10)
    
    
        db = Pokemon('pokemon', 64, 'train')
    
        x,y = next(iter(db))
        print('sample:', x.shape, y.shape, y)
    
        viz.image(db.denormalize(x), win='sample_x', opts=dict(title='sample_x'))
    
        loader = DataLoader(db, batch_size=32, shuffle=True, num_workers=8)
    
        for x,y in loader:
            viz.images(db.denormalize(x), nrow=8, win='batch', opts=dict(title='batch'))
            viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
    
            time.sleep(10)
    
    if __name__ == '__main__':
        main()
    

    train_transfer.py

    import  torch
    from    torch import optim, nn
    import  visdom
    import  torchvision
    from    torch.utils.data import DataLoader
    
    from    pokemon import Pokemon
    # from    resnet import ResNet18
    from    torchvision.models import resnet18
    
    from    utils import Flatten
    
    batchsz = 32
    lr = 1e-3
    epochs = 10
    
    device = torch.device('cuda')
    torch.manual_seed(1234)
    
    
    train_db = Pokemon('pokemon', 224, mode='train')
    val_db = Pokemon('pokemon', 224, mode='val')
    test_db = Pokemon('pokemon', 224, mode='test')
    train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
                              num_workers=4)
    val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
    test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)
    
    
    viz = visdom.Visdom()
    
    def evalute(model, loader):
        model.eval()
        
        correct = 0
        total = len(loader.dataset)
    
        for x,y in loader:
            x,y = x.to(device), y.to(device)
            with torch.no_grad():
                logits = model(x)
                pred = logits.argmax(dim=1)
            correct += torch.eq(pred, y).sum().float().item()
    
        return correct / total
    
    def main():
    
        # model = ResNet18(5).to(device)
        trained_model = resnet18(pretrained=True)
        model = nn.Sequential(*list(trained_model.children())[:-1], #[b, 512, 1, 1]
                              Flatten(), # [b, 512, 1, 1] => [b, 512]
                              nn.Linear(512, 5)
                              ).to(device)
        # x = torch.randn(2, 3, 224, 224)
        # print(model(x).shape)
    
        optimizer = optim.Adam(model.parameters(), lr=lr)
        criteon = nn.CrossEntropyLoss()
    
    
        best_acc, best_epoch = 0, 0
        global_step = 0
        viz.line([0], [-1], win='loss', opts=dict(title='loss'))
        viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc'))
        for epoch in range(epochs):
    
            for step, (x,y) in enumerate(train_loader):
    
                # x: [b, 3, 224, 224], y: [b]
                x, y = x.to(device), y.to(device)
    
                model.train()
                logits = model(x)
                loss = criteon(logits, y)
    
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
    
                viz.line([loss.item()], [global_step], win='loss', update='append')
                global_step += 1
    
            if epoch % 1 == 0:
    
                val_acc = evalute(model, val_loader)
                if val_acc> best_acc:
                    best_epoch = epoch
                    best_acc = val_acc
    
                    torch.save(model.state_dict(), 'best.mdl')
    
                    viz.line([val_acc], [global_step], win='val_acc', update='append')
    
    
        print('best acc:', best_acc, 'best epoch:', best_epoch)
    
        model.load_state_dict(torch.load('best.mdl'))
        print('loaded from ckpt!')
    
        test_acc = evalute(model, test_loader)
        print('test acc:', test_acc)
    
    if __name__ == '__main__':
        main()
    

    相关文章

      网友评论

          本文标题:自定义数据集图像分类-Pytorch

          本文链接:https://www.haomeiwen.com/subject/cvxnfhtx.html