美文网首页
Java关键字之volatile

Java关键字之volatile

作者: 小丸子的呆地 | 来源:发表于2021-07-12 08:44 被阅读0次

内容大部分摘自马士兵教育

volatile用来修饰变量,保证其内存可见性,并且防止jvm或者cpu对其进行指令重排序。

volatile的用途

1.线程可见性

package com.mashibing.testvolatile;

public class T01_ThreadVisibility {
    private static volatile boolean flag = true;

    public static void main(String[] args) throws InterruptedException {
        new Thread(()-> {
            while (flag) {
                //do sth
            }
            System.out.println("end");
        }, "server").start();


        Thread.sleep(1000);

        flag = false;
    }
}

2.防止指令重排序

问题:DCL单例需不需要加volatile?

需要。

CPU的基础知识
  • 缓存行对齐
    缓存行64个字节是CPU同步的基本单位,缓存行隔离会比伪共享效率要高
    Disruptor

  • 需要注意,JDK8引入了@sun.misc.Contended注解,来保证缓存行隔离效果
    要使用此注解,必须去掉限制参数:-XX:-RestrictContended

  • 另外,java编译器或者JIT编译器有可能会去除没用的字段,所以填充字段必须加上volatile

package com.mashibing.juc.c_028_FalseSharing;
 
 public class T02_CacheLinePadding {
     private static class Padding {
         public volatile long p1, p2, p3, p4, p5, p6, p7; //
     }
 
     private static class T extends Padding {
         public volatile long x = 0L;
     }
 
     public static T[] arr = new T[2];
 
     static {
         arr[0] = new T();
         arr[1] = new T();
     }
 
     public static void main(String[] args) throws Exception {
         Thread t1 = new Thread(()->{
             for (long i = 0; i < 1000_0000L; i++) {
                 arr[0].x = i;
             }
         });
 
         Thread t2 = new Thread(()->{
             for (long i = 0; i < 1000_0000L; i++) {
                 arr[1].x = i;
             }
         });
 
         final long start = System.nanoTime();
         t1.start();
         t2.start();
         t1.join();
         t2.join();
         System.out.println((System.nanoTime() - start)/100_0000);
     }
 }
 

MESI

  • 伪共享

  • 合并写
    CPU内部的4个字节的Buffer

    package com.mashibing.juc.c_029_WriteCombining;
    
    public final class WriteCombining {
    
        private static final int ITERATIONS = Integer.MAX_VALUE;
        private static final int ITEMS = 1 << 24;
        private static final int MASK = ITEMS - 1;
    
        private static final byte[] arrayA = new byte[ITEMS];
        private static final byte[] arrayB = new byte[ITEMS];
        private static final byte[] arrayC = new byte[ITEMS];
        private static final byte[] arrayD = new byte[ITEMS];
        private static final byte[] arrayE = new byte[ITEMS];
        private static final byte[] arrayF = new byte[ITEMS];
    
        public static void main(final String[] args) {
    
            for (int i = 1; i <= 3; i++) {
                System.out.println(i + " SingleLoop duration (ns) = " + runCaseOne());
                System.out.println(i + " SplitLoop  duration (ns) = " + runCaseTwo());
            }
        }
    
        public static long runCaseOne() {
            long start = System.nanoTime();
            int i = ITERATIONS;
    
            while (--i != 0) {
                int slot = i & MASK;
                byte b = (byte) i;
                arrayA[slot] = b;
                arrayB[slot] = b;
                arrayC[slot] = b;
                arrayD[slot] = b;
                arrayE[slot] = b;
                arrayF[slot] = b;
            }
            return System.nanoTime() - start;
        }
    
        public static long runCaseTwo() {
            long start = System.nanoTime();
            int i = ITERATIONS;
            while (--i != 0) {
                int slot = i & MASK;
                byte b = (byte) i;
                arrayA[slot] = b;
                arrayB[slot] = b;
                arrayC[slot] = b;
            }
            i = ITERATIONS;
            while (--i != 0) {
                int slot = i & MASK;
                byte b = (byte) i;
                arrayD[slot] = b;
                arrayE[slot] = b;
                arrayF[slot] = b;
            }
            return System.nanoTime() - start;
        }
    }
    
    
  • 指令重排序

    package com.mashibing.jvm.c3_jmm;
    
    public class T04_Disorder {
        private static int x = 0, y = 0;
        private static int a = 0, b =0;
    
        public static void main(String[] args) throws InterruptedException {
            int i = 0;
            for(;;) {
                i++;
                x = 0; y = 0;
                a = 0; b = 0;
                Thread one = new Thread(new Runnable() {
                    public void run() {
                        //由于线程one先启动,下面这句话让它等一等线程two. 读着可根据自己电脑的实际性能适当调整等待时间.
                        //shortWait(100000);
                        a = 1;
                        x = b;
                    }
                });
    
                Thread other = new Thread(new Runnable() {
                    public void run() {
                        b = 1;
                        y = a;
                    }
                });
                one.start();other.start();
                one.join();other.join();
                String result = "第" + i + "次 (" + x + "," + y + ")";
                if(x == 0 && y == 0) {
                    System.err.println(result);
                    break;
                } else {
                    //System.out.println(result);
                }
            }
        }
    
    
        public static void shortWait(long interval){
            long start = System.nanoTime();
            long end;
            do{
                end = System.nanoTime();
            }while(start + interval >= end);
        }
    }
    

系统底层如何实现数据一致性

  1. MESI如果能解决,就使用MESI
  2. 如果不能,就锁总线

系统底层如何保证有序性

  1. 内存屏障sfence mfence lfence等系统原语
  2. 锁总线

volatile如何解决指令重排序

1: volatile i

2: ACC_VOLATILE

3: JVM的内存屏障

屏障两边的指令不可以重排!保障有序!

happends-before 

as - if - serial

4:hotspot实现

bytecodeinterpreter.cpp

int field_offset = cache->f2_as_index();
          if (cache->is_volatile()) {
            if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
              OrderAccess::fence();
            }

orderaccess_linux_x86.inline.hpp

inline void OrderAccess::fence() {
  if (os::is_MP()) {
    // always use locked addl since mfence is sometimes expensive
#ifdef AMD64
    __asm__ volatile ("lock; addl $0,0(%%rsp)" : : : "cc", "memory");
#else
    __asm__ volatile ("lock; addl $0,0(%%esp)" : : : "cc", "memory");
#endif
  }
}

LOCK 用于在多处理器中执行指令时对共享内存的独占使用。
它的作用是能够将当前处理器对应缓存的内容刷新到内存,并使其他处理器对应的缓存失效。

另外还提供了有序的指令无法越过这个内存屏障的作用。

相关文章

网友评论

      本文标题:Java关键字之volatile

      本文链接:https://www.haomeiwen.com/subject/dacrpltx.html