前言
Digit Recognizer是一个Kaggle练习题。
然后麻雀虽小,五脏俱全。为了优化Score,前前后后长了多个方法的和多次模型的改进,Accuracy score也从~0.96 -> 0.98-> 0.99 -> 到目前的1.0。
这个代码正是获得test accuracy 100%的Notebook,仅供参考和交流。
(当然这个notebook的框架也是站在前任的基础上,感谢在kaggle和其他网站分享notebook和结题思路的朋友)
下面进入正题
# 导入必要的libs
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
%matplotlib inline
np.random.seed(2)
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools
from keras.utils.np_utils import to_categorical # convert to one-hot-encoding
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau
from keras.datasets import mnist
sns.set(style='white', context='notebook', palette='deep')
Using TensorFlow backend.
数据集:链接:https://pan.baidu.com/s/1SmBFmWp4iynF-t0O01_Psg
提取码:mgm8
# 加载数据
train = pd.read_csv("../input/train.csv")
test = pd.read_csv("../input/test.csv")
Y_train = train["label"]
X_train = train.drop(labels = ["label"], axis = 1)
# 加载更多的数据集,如果没这批数据,validation accuracy = 0.9964
# 有这批数据后,validation accuracy 可以到达 0.9985
(x_train1, y_train1), (x_test1, y_test1) = mnist.load_data()
train1 = np.concatenate([x_train1, x_test1], axis=0)
y_train1 = np.concatenate([y_train1, y_test1], axis=0)
Y_train1 = y_train1
X_train1 = train1.reshape(-1, 28*28)
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
11493376/11490434 [==============================] - 1s 0us/step
# 打印数据的直方图
g = sns.countplot(Y_train)
在这里插入图片描述
# 归一化数据,让CNN更快
X_train = X_train / 255.0
test = test / 255.0
X_train1 = X_train1 / 255.0
# Reshape 图片为 3D array (height = 28px, width = 28px , canal = 1)
X_train = np.concatenate((X_train.values, X_train1))
Y_train = np.concatenate((Y_train, Y_train1))
X_train = X_train.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1)
# 把label转换为one hot vectors (ex : 2 -> [0,0,1,0,0,0,0,0,0,0])
Y_train = to_categorical(Y_train, num_classes = 10)
# 拆分数据集为训练集和验证集
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=2)
# 画一个数据集的例子来看看
g = plt.imshow(X_train[0][:,:,0])
在这里插入图片描述
# 创建CNN model
# 模型:
"""
[[Conv2D->relu]*2 -> BatchNormalization -> MaxPool2D -> Dropout]*2 ->
[Conv2D->relu]*2 -> BatchNormalization -> Dropout ->
Flatten -> Dense -> BatchNormalization -> Dropout -> Out
"""
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size = (5,5),padding = 'Same', activation ='relu', input_shape = (28,28,1)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size = (5,5),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3), padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(10, activation = "softmax"))
# 打印出model 看看
from keras.utils import plot_model
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True)
from IPython.display import Image
Image("model.png")
png
# 定义Optimizer
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
# 编译model
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
# 设置学习率的动态调整
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
epochs = 50
batch_size = 128
# 通过数据增强来防止过度拟合
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range = 0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
datagen.fit(X_train)
# 训练模型
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data = (X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction])
Epoch 1/50
- 47s - loss: 0.1388 - acc: 0.9564 - val_loss: 0.0434 - val_acc: 0.9852
Epoch 2/50
- 43s - loss: 0.0496 - acc: 0.9845 - val_loss: 0.0880 - val_acc: 0.9767
Epoch 3/50
- 43s - loss: 0.0384 - acc: 0.9884 - val_loss: 0.0230 - val_acc: 0.9933
Epoch 4/50
- 44s - loss: 0.0331 - acc: 0.9898 - val_loss: 0.0224 - val_acc: 0.9942
Epoch 5/50
- 42s - loss: 0.0300 - acc: 0.9910 - val_loss: 0.0209 - val_acc: 0.9933
Epoch 6/50
- 42s - loss: 0.0257 - acc: 0.9924 - val_loss: 0.0167 - val_acc: 0.9953
Epoch 7/50
- 42s - loss: 0.0250 - acc: 0.9924 - val_loss: 0.0159 - val_acc: 0.9952
Epoch 8/50
- 43s - loss: 0.0248 - acc: 0.9928 - val_loss: 0.0149 - val_acc: 0.9951
Epoch 9/50
- 42s - loss: 0.0218 - acc: 0.9934 - val_loss: 0.0170 - val_acc: 0.9954
Epoch 00009: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.
Epoch 10/50
- 42s - loss: 0.0176 - acc: 0.9947 - val_loss: 0.0106 - val_acc: 0.9965
Epoch 11/50
- 43s - loss: 0.0149 - acc: 0.9956 - val_loss: 0.0101 - val_acc: 0.9969
Epoch 12/50
- 42s - loss: 0.0152 - acc: 0.9953 - val_loss: 0.0084 - val_acc: 0.9973
Epoch 13/50
- 42s - loss: 0.0146 - acc: 0.9958 - val_loss: 0.0079 - val_acc: 0.9980
Epoch 14/50
- 43s - loss: 0.0134 - acc: 0.9959 - val_loss: 0.0129 - val_acc: 0.9962
Epoch 15/50
- 42s - loss: 0.0135 - acc: 0.9959 - val_loss: 0.0093 - val_acc: 0.9971
Epoch 16/50
- 43s - loss: 0.0129 - acc: 0.9960 - val_loss: 0.0085 - val_acc: 0.9974
Epoch 00016: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
Epoch 17/50
- 43s - loss: 0.0109 - acc: 0.9968 - val_loss: 0.0064 - val_acc: 0.9980
Epoch 18/50
- 44s - loss: 0.0107 - acc: 0.9966 - val_loss: 0.0068 - val_acc: 0.9984
Epoch 19/50
- 43s - loss: 0.0104 - acc: 0.9969 - val_loss: 0.0065 - val_acc: 0.9986
Epoch 20/50
- 43s - loss: 0.0097 - acc: 0.9969 - val_loss: 0.0057 - val_acc: 0.9985
Epoch 21/50
- 43s - loss: 0.0092 - acc: 0.9971 - val_loss: 0.0073 - val_acc: 0.9981
Epoch 22/50
- 43s - loss: 0.0097 - acc: 0.9970 - val_loss: 0.0068 - val_acc: 0.9982
Epoch 00022: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.
Epoch 23/50
- 43s - loss: 0.0083 - acc: 0.9975 - val_loss: 0.0064 - val_acc: 0.9984
Epoch 24/50
- 43s - loss: 0.0085 - acc: 0.9974 - val_loss: 0.0061 - val_acc: 0.9985
Epoch 25/50
- 43s - loss: 0.0081 - acc: 0.9976 - val_loss: 0.0058 - val_acc: 0.9988
Epoch 26/50
- 43s - loss: 0.0080 - acc: 0.9977 - val_loss: 0.0065 - val_acc: 0.9986
Epoch 27/50
- 43s - loss: 0.0078 - acc: 0.9977 - val_loss: 0.0066 - val_acc: 0.9984
Epoch 28/50
- 44s - loss: 0.0088 - acc: 0.9975 - val_loss: 0.0060 - val_acc: 0.9988
Epoch 00028: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
Epoch 29/50
- 44s - loss: 0.0077 - acc: 0.9975 - val_loss: 0.0056 - val_acc: 0.9988
Epoch 30/50
- 43s - loss: 0.0063 - acc: 0.9980 - val_loss: 0.0054 - val_acc: 0.9988
Epoch 31/50
- 44s - loss: 0.0069 - acc: 0.9980 - val_loss: 0.0056 - val_acc: 0.9988
Epoch 00031: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.
Epoch 32/50
- 44s - loss: 0.0068 - acc: 0.9980 - val_loss: 0.0055 - val_acc: 0.9986
Epoch 33/50
- 43s - loss: 0.0066 - acc: 0.9981 - val_loss: 0.0055 - val_acc: 0.9987
Epoch 34/50
- 43s - loss: 0.0069 - acc: 0.9979 - val_loss: 0.0055 - val_acc: 0.9988
Epoch 00034: ReduceLROnPlateau reducing learning rate to 1.5625000742147677e-05.
Epoch 35/50
- 43s - loss: 0.0065 - acc: 0.9979 - val_loss: 0.0055 - val_acc: 0.9988
Epoch 36/50
- 42s - loss: 0.0069 - acc: 0.9980 - val_loss: 0.0054 - val_acc: 0.9988
Epoch 37/50
- 43s - loss: 0.0064 - acc: 0.9980 - val_loss: 0.0054 - val_acc: 0.9988
Epoch 00037: ReduceLROnPlateau reducing learning rate to 1e-05.
Epoch 38/50
- 42s - loss: 0.0067 - acc: 0.9979 - val_loss: 0.0054 - val_acc: 0.9989
Epoch 39/50
- 43s - loss: 0.0067 - acc: 0.9979 - val_loss: 0.0055 - val_acc: 0.9988
Epoch 40/50
- 43s - loss: 0.0060 - acc: 0.9983 - val_loss: 0.0055 - val_acc: 0.9988
Epoch 41/50
- 42s - loss: 0.0056 - acc: 0.9983 - val_loss: 0.0055 - val_acc: 0.9988
Epoch 42/50
- 43s - loss: 0.0064 - acc: 0.9981 - val_loss: 0.0055 - val_acc: 0.9988
Epoch 43/50
- 42s - loss: 0.0060 - acc: 0.9982 - val_loss: 0.0054 - val_acc: 0.9988
Epoch 44/50
- 42s - loss: 0.0062 - acc: 0.9981 - val_loss: 0.0054 - val_acc: 0.9989
Epoch 45/50
- 42s - loss: 0.0061 - acc: 0.9980 - val_loss: 0.0055 - val_acc: 0.9989
Epoch 46/50
- 42s - loss: 0.0059 - acc: 0.9983 - val_loss: 0.0056 - val_acc: 0.9989
Epoch 47/50
- 42s - loss: 0.0065 - acc: 0.9980 - val_loss: 0.0054 - val_acc: 0.9989
Epoch 48/50
- 43s - loss: 0.0069 - acc: 0.9980 - val_loss: 0.0055 - val_acc: 0.9989
Epoch 49/50
- 42s - loss: 0.0068 - acc: 0.9980 - val_loss: 0.0055 - val_acc: 0.9989
Epoch 50/50
- 42s - loss: 0.0065 - acc: 0.9981 - val_loss: 0.0054 - val_acc: 0.9988
# 画训练集和验证集的loss和accuracy曲线。可以判断是否欠拟合或过拟合
fig, ax = plt.subplots(2,1)
ax[0].plot(history.history['loss'], color='b', label="Training loss")
ax[0].plot(history.history['val_loss'], color='r', label="validation loss",axes =ax[0])
legend = ax[0].legend(loc='best', shadow=True)
ax[1].plot(history.history['acc'], color='b', label="Training accuracy")
ax[1].plot(history.history['val_acc'], color='r',label="Validation accuracy")
legend = ax[1].legend(loc='best', shadow=True)
在这里插入图片描述
# 画出混淆矩阵,可以用来观察误判比较高的情况
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Predict the values from the validation dataset
Y_pred = model.predict(X_val)
# Convert predictions classes to one hot vectors
Y_pred_classes = np.argmax(Y_pred,axis = 1)
# Convert validation observations to one hot vectors
Y_true = np.argmax(Y_val,axis = 1)
# compute the confusion matrix
confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)
# plot the confusion matrix
plot_confusion_matrix(confusion_mtx, classes = range(10))
在这里插入图片描述
# 显示一些错误结果,及预测标签和真实标签之间的不同
errors = (Y_pred_classes - Y_true != 0)
Y_pred_classes_errors = Y_pred_classes[errors]
Y_pred_errors = Y_pred[errors]
Y_true_errors = Y_true[errors]
X_val_errors = X_val[errors]
def display_errors(errors_index,img_errors,pred_errors, obs_errors):
""" This function shows 6 images with their predicted and real labels"""
n = 0
nrows = 2
ncols = 3
fig, ax = plt.subplots(nrows,ncols,sharex=True,sharey=True)
for row in range(nrows):
for col in range(ncols):
error = errors_index[n]
ax[row,col].imshow((img_errors[error]).reshape((28,28)))
ax[row,col].set_title("Predicted label :{}\nTrue label :{}".format(pred_errors[error],obs_errors[error]))
n += 1
# Probabilities of the wrong predicted numbers
Y_pred_errors_prob = np.max(Y_pred_errors,axis = 1)
# Predicted probabilities of the true values in the error set
true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1))
# Difference between the probability of the predicted label and the true label
delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors
# Sorted list of the delta prob errors
sorted_dela_errors = np.argsort(delta_pred_true_errors)
# Top 6 errors
most_important_errors = sorted_dela_errors[-6:]
# Show the top 6 errors
display_errors(most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors)
在这里插入图片描述
# 对测试集做预测
results = model.predict(test)
# 把one-hot vector转换为数字
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
# 保存最终的结果
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_submission.csv",index=False)
网友评论