美文网首页
第六章 并发容器和框架

第六章 并发容器和框架

作者: 巴巴11 | 来源:发表于2020-05-05 22:50 被阅读0次

介绍大部分并发容器。深入分析原理细节。领悟多线程设计的技巧。

6.1 ConcurrentHashMap的实现原理与使用

ConcurrentHashMap是线程安全且高效的HashMap。

6.1.1 为什么要使用ConcurrentHashMap

在并发编程中使用HashMap可能导致程序死循环。
而使用线程安全的HashTable效率又非常低下,基于以上两个原因,便有了ConcurrentHashMap的登场机会。

(1)线程不安全的HashMap
在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。例如,执行以下代码会引起死循环。

final HashMap<String, String> map = new HashMap<String, String>(2);
Thread t = new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10000; i++) {
new Thread(new Runnable() {
@Override
public void run() {
map.put(UUID.randomUUID().toString(), "");
}
}, "ftf" + i).start();
}
}
}, "ftf");
t.start();
t.join();

HashMap在并发执行put操作时会引起死循环,是因为多线程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry。

(2)效率低下的HashTable
HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。

因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状态。如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能使用get方法来获取元素,所以竞争越激烈效率越低。

(3)ConcurrentHashMap的锁分段技术可有效提升并发访问率HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。

首先将数据分成一段一段地存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

6.1.2 ConcurrentHashMap的结构
通过ConcurrentHashMap的类图来分析ConcurrentHashMap的结构,如图6-1所示。

ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。
Segment是一种可重入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;
HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组。
Segment的结构和HashMap类似,是一种数组和链表结构。
一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,每个Segment守护着一个HashEntry数组里的元素,当HashEntry数组的数据进行修改时,必须首先获得与它对应的Segment锁,如图6-2所示。

ConcurrentHashMap的类图 ConcurrentHashMap的结构图

6.1.3 ConcurrentHashMap的初始化

ConcurrentHashMap初始化方法是通过initialCapacity、loadFactor和concurrencyLevel等几个参数来初始化segment数组、段偏移量segmentShift、段掩码segmentMask和每个segment里的HashEntry数组来实现的。

1.初始化segments数组
让我们来看一下初始化segments数组的源代码。

/**
     * Creates a new, empty map with an initial table size
     * accommodating the specified number of elements without the need
     * to dynamically resize.
     *
     * @param initialCapacity The implementation performs internal
     * sizing to accommodate this many elements.
     * @throws IllegalArgumentException if the initial capacity of
     * elements is negative
     */
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }

由上面的代码可知,segments数组的长度ssize是通过concurrencyLevel计算得出的。

为了能通过按位与的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方(power-of-two size),所以必须计算出一个大于或等于concurrencyLevel的最小的2的N次方值来作为segments数组的长度。假如concurrencyLevel等于14、15或16,ssize都会等于16,即容器里锁的个数也是16。

注意 concurrencyLevel的最大值是65535,这意味着segments数组的长度最大为65536,对应的二进制是16位。

2.初始化segmentShift和segmentMask

这两个全局变量需要在定位segment时的散列算法里使用,sshift等于ssize从1向左移位的次数,在默认情况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。

segmentShift用于定位参与散列运算的位数,segmentShift等于32减sshift,所以等于28,这里之所以用32是因为ConcurrentHashMap里的hash()方法输出的最大数是32位的,后面的测试中我们
可以看到这点。

segmentMask是散列运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1。因为ssize的最大长度是65536,所以segmentShift最大值是16,segmentMask最大值是65535,对应的二进制是16位,每个位都是1。

3.初始化每个segment
输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负载因子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。

/**
     * Creates a new, empty map with an initial table size based on
     * the given number of elements ({@code initialCapacity}), table
     * density ({@code loadFactor}), and number of concurrently
     * updating threads ({@code concurrencyLevel}).
     *
     * @param initialCapacity the initial capacity. The implementation
     * performs internal sizing to accommodate this many elements,
     * given the specified load factor.
     * @param loadFactor the load factor (table density) for
     * establishing the initial table size
     * @param concurrencyLevel the estimated number of concurrently
     * updating threads. The implementation may use this value as
     * a sizing hint.
     * @throws IllegalArgumentException if the initial capacity is
     * negative or the load factor or concurrencyLevel are
     * nonpositive
     */
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,如果c大于1,就会取大于等于c的2的N次方值,所以cap不是1,就是2的N次方。

segment的容量threshold=(int)cap*loadFactor,默认情况下initialCapacity等于16,loadfactor等于0.75,通过运算cap等于1,threshold等于零。

6.1.4 定位Segment
既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素的时候,必须先通过散列算法定位到Segment。可以看到ConcurrentHashMap会首先使用Wang/Jenkins hash的变种算法对元素的hashCode进行一次再散列。

private static int hash(int h) {
h += (h << 15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h << 3);
h ^= (h >>> 6);
h += (h << 2) + (h << 14);
return h ^ (h >>> 16);
}

之所以进行再散列,目的是减少散列冲突,使元素能够均匀地分布在不同的Segment上,从而提高容器的存取效率。假如散列的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。

默认情况下segmentShift为28,segmentMask为15,再散列后的数最大是32位二进制数据,向右无符号移动28位,意思是让高4位参与到散列运算中,(hash>>>segmentShift)&segmentMask的运算结果分别是4、15、7和8,可以看到散列值没有发生冲突。

6.1.5 ConcurrentHashMap的操作

3种操作——get操作、put操作和size操作。

1.get操作

Segment的get操作实现非常简单和高效。先经过一次再散列,然后使用这个散列值通过散列运算定位到Segment,再通过散列算法定位到元素。
(get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空才会加锁重读。)

get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空才会加锁重读。
我们知道HashTable容器的get方法是需要加锁的,那ConcurrentHashMap的get操作是如何做到不加锁的呢?
原因是它的get方法里将要使用的共享变量都定义成volatile类型,如用于统计当前Segement大小的count字段和用于存储值的HashEntry的value。定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖于原值),在get操作里只需要读不需要写共享变量count和value,所以可以不用加锁。
之所以不会读到过期的值,是因为根据Java内存模型的happen before原则,对volatile字段的写入操作先于读操作,即使两个线程同时修改和获取volatile变量,get操作也能拿到最新的值,这是用volatile替换锁的经典应用场景。

2.put操作

由于put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须加锁。put方法首先定位到Segment,然后在Segment里进行插入操作。

插入操作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置,然后将其放在HashEntry数组里。
(1)是否需要扩容
在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈值,则对数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。
(2)如何扩容
在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后将原数组里的元素进行再散列后插入到新的数组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。

3.size操作

如果要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小后求和。

Segment里的全局变量count是一个volatile变量,那么在多线程场景下,是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap大小了呢? 不是的,虽然相加时可以获取每个Segment的count的最新值,但是可能累加前使用的count发生了变化,那么统计结果就不准了。所以,最安全的做法是在统计size的时候把所有Segment的put、remove和clean方法全部锁住,但是这种做法显然非常低效。
因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以ConcurrentHashMap的做法是先尝试2次通过不锁住Segment的方式来统计各个Segment大小,如果统计的过程中,容器的count发生了变化,则再采用加锁的方式来统计所有Segment的大小。

那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?
使用modCount变量,在put、remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生变化,从而得知容器的大小是否发生变化。

6.2 ConcurrentLinkedQueue

在并发编程中,有时候需要使用线程安全的队列。如果要实现一个线程安全的队列有两种方式:
一种是使用阻塞算法,另一种是使用非阻塞算法。使用阻塞算法的队列可以用一个锁(入队和出队用同一把锁)或两个锁(入队和出队用不同的锁)等方式来实现。
非阻塞的实现方式则可以使用循环CAS的方式来实现。

研究一下Doug Lea是如何使用非阻塞的方式来实现线程安全队列ConcurrentLinkedQueue的,相信从大师身上我们能学到不少并发编程的
技巧。

ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部;当我们获取一个元素时,它会返回队列头部的元素。它采用了“wait-free”算法(即CAS算法)来实现,该算法在Michael&Scott算法上进行了一些修改。

6.2.1 ConcurrentLinkedQueue的结构
通过ConcurrentLinkedQueue的类图来分析一下它的结构,如图6-3所示。

ConcurrentLinkedQueue的类图

6.3 Java中的阻塞队列
将介绍什么是阻塞队列,以及Java中阻塞队列的4种处理方式,并介绍Java 7中提供的7种阻塞队列,最后分析阻塞队列的一种实现方式。

6.3.1 什么是阻塞队列
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作支持阻塞
的插入和移除方法。
1)支持阻塞的插入方法:意思是当队列满时,队列会阻塞插入元素的线程,直到队列不满。
2)支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空。

阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。

在阻塞队列不可用时,这两个附加操作提供了4种处理方式,如表6-1所示。


插入和移除操作的4中处理方式
  • 抛出异常:
    当队列满时,如果再往队列里插入元素,会抛出IllegalStateException("Queuefull")异常。当队列空时,从队列里获取元素会抛出NoSuchElementException异常。
  • 返回特殊值:当往队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有则返回null。
  • 一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列空时,如果消费者线程从队列里take元素,队列会阻塞住消费者线程,直到队列不为空。
  • 超时退出:当阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超过了指定的时间,生产者线程就会退出。

注意 如果是无界阻塞队列,队列不可能会出现满的情况,所以使用put或offer方法永远不会被阻塞,而且使用offer方法时,该方法永远返回true。

6.3.2 Java里的阻塞队列
JDK 7提供了7个阻塞队列,如下。

  • ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
  • LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。
  • PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。
  • SynchronousQueue:一个不存储元素的阻塞队列。
  • LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
  • LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

1.ArrayBlockingQueue

ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。

默认情况下不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。

为了保证公平性,通常会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列。

ArrayBlockingQueue fairQueue = new ArrayBlockingQueue(1000,true);

/**
     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
     * capacity and the specified access policy.
     *
     * @param capacity the capacity of this queue
     * @param fair if {@code true} then queue accesses for threads blocked
     *        on insertion or removal, are processed in FIFO order;
     *        if {@code false} the access order is unspecified.
     * @throws IllegalArgumentException if {@code capacity < 1}
     */
    public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }

2.LinkedBlockingQueue

LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

3.PriorityBlockingQueue

PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采取自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。

4.DelayQueue

DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。

DelayQueue非常有用,可以将DelayQueue运用在以下应用场景。

  • 缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
  • 定时任务调度:使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,比如TimerQueue就是使用DelayQueue实现的。

(1)如何实现Delayed接口
DelayQueue队列的元素必须实现Delayed接口。我们可以参考ScheduledThreadPoolExecutor里ScheduledFutureTask类的实现,一共有三步。
第一步:在对象创建的时候,初始化基本数据。使用time记录当前对象延迟到什么时候可以使用,使用sequenceNumber来标识元素在队列中的先后顺序。代码如下。

package java.util.concurrent;
public class ScheduledThreadPoolExecutor
        extends ThreadPoolExecutor
        implements ScheduledExecutorService {

/**
         * Creates a one-shot action with given nanoTime-based trigger time.
         */
        ScheduledFutureTask(Runnable r, V result, long ns) {
            super(r, result);
            this.time = ns;
            this.period = 0;
            this.sequenceNumber = sequencer.getAndIncrement();
        }
}

第二步:实现getDelay方法,该方法返回当前元素还需要延时多长时间,单位是纳秒,代码如下。

public long getDelay(TimeUnit unit) {
            return unit.convert(time - now(), NANOSECONDS);
        }

public int compareTo(Delayed other) {
            if (other == this) // compare zero if same object
                return 0;
            if (other instanceof ScheduledFutureTask) {
                ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
                long diff = time - x.time;
                if (diff < 0)
                    return -1;
                else if (diff > 0)
                    return 1;
                else if (sequenceNumber < x.sequenceNumber)
                    return -1;
                else
                    return 1;
            }
            long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);
            return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
        }

通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因为实现getDelay()方法时可以指定任意单位,一旦以秒或分作为单位,而延时时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。

第三步:实现compareTo方法来指定元素的顺序。例如,让延时时间最长的放在队列的末尾。实现代码如下。

(2)如何实现延时阻塞队列
延时阻塞队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时间,就阻塞当前线程。

long delay = first.getDelay(TimeUnit.NANOSECONDS);
if (delay <= 0)
return q.poll();
else if (leader != null)
available.await();
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
available.awaitNanos(delay);
} finally {
if (leader == thisThread)
leader = null;
}
}

代码中的变量leader是一个等待获取队列头部元素的线程。如果leader不等于空,表示已经有线程在等待获取队列的头元素。所以,使用await()方法让当前线程等待信号。如果leader等于空,则把当前线程设置成leader,并使用awaitNanos()方法让当前线程等待接收信号或等待delay时间。

5.SynchronousQueue

SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。

它支持公平访问队列。默认情况下线程采用非公平性策略访问队列。使用以下构造方法可以创建公平性访问的SynchronousQueue,如果设置为true,则等待的线程会采用先进先出的
顺序访问队列。

public SynchronousQueue(boolean fair) {
transferer = fair new TransferQueue() : new TransferStack();
}

SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合传递性场景。SynchronousQueue的吞吐量高于LinkedBlockingQueue和ArrayBlockingQueue。

6.LinkedTransferQueue

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。

(1)transfer方法
如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立transfer(传输)给消费者。如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下。

Node pred = tryAppend(s, haveData);
return awaitMatch(s, pred, e, (how == TIMED), nanos);

第一行代码是试图把存放当前元素的s节点作为tail节点。第二行代码是让CPU自旋等待消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其他线程。

(2)tryTransfer方法
tryTransfer方法是用来试探生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回,而transfer方法是必须等到消费者消费了才返回。

对于带有时间限制的tryTransfer(E e,long timeout,TimeUnit unit)方法,试图把生产者传入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。

7.LinkedBlockingDeque

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的是可以从队列的两端插入和移出元素。双向队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst、addLast、offerFirst、offerLast、peekFirst和peekLast等方法,以First单词结尾的方法,表示插入、获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入、获取或移除双端队列的最后一个元素。另外,插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同于takeFirst,不知道是不是JDK的bug,使用时还是用带有First和Last后缀的方法更清楚。

在初始化LinkedBlockingDeque时可以设置容量防止其过度膨胀。另外,双向阻塞队列可以运用在“工作窃取”模式中。

6.3.3 阻塞队列的实现原理

如果队列是空的,消费者会一直等待,当生产者添加元素时,消费者是如何知道当前队列有元素的呢? 如果让你来设计阻塞队列你会如何设计,如何让生产者和消费者进行高效率的通信呢? 让我们先来看看JDK是如何实现的。

使用通知模式实现。
所谓通知模式,就是当生产者往满的队列里添加元素时会阻塞住生
产者,当消费者消费了一个队列中的元素后,会通知生产者当前队列可用。通过查看JDK源码发现ArrayBlockingQueue使用了Condition来实现,代码如下。

private final Condition notFull;
private final Condition notEmpty;
public ArrayBlockingQueue(int capacity, boolean fair) {
// 省略其他代码
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
insert(e);
} finally {
lock.unlock();
}
}p
ublic E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0)
notEmpty.await();
return extract();
} finally {
lock.unlock();
}
}p
rivate void insert(E x) {
items[putIndex] = x;
putIndex = inc(putIndex);
++count;
notEmpty.signal();
}当往队列里插入一个元素时,如果队列不可用,那么阻塞生产者主要通过
LockSupport.park(this)来实现。
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}i
f (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}

继续进入源码,发现调用setBlocker先保存一下将要阻塞的线程,然后调用unsafe.park阻塞
当前线程。
public static void park(Object blocker) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(false, 0L);
setBlocker(t, null);
}

unsafe.park是个native方法,代码如下。
public native void park(boolean isAbsolute, long time);
park这个方法会阻塞当前线程,只有以下4种情况中的一种发生时,该方法才会返回。

  • 与park对应的unpark执行或已经执行时。“已经执行”是指unpark先执行,然后再执行park的情况。
  • 线程被中断时。
  • 等待完time参数指定的毫秒数时。
  • 异常现象发生时,这个异常现象没有任何原因。
    继续看一下JVM是如何实现park方法:park在不同的操作系统中使用不同的方式实现,在Linux下使用的是系统方法pthread_cond_wait实现。实现代码在JVM源码路径
    src/os/linux/vm/os_linux.cpp里的os::PlatformEvent::park方法。

6.4 Fork/Join框架

Fork/Join框架的基本原理、算法、设计方式、应用与实现等。

Fork/Join框架是Java 7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。

我们再通过Fork和Join这两个单词来理解一下Fork/Join框架。Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果

比如计算1+2+…+10000,可以分割成10个子任务,每个子任务分别对1000个数进行求和,最终汇总这10个子任务的结果。Fork/Join的运行流程如图6-6所示。

Fork Join的运行流程图

6.4.2 工作窃取算法

工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。

那么,为什么需要使用工作窃取算法呢?
假如我们需要做一个比较大的任务,可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应。比如A线程负责处理A队列里的任务。
但是,有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿
任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

工作窃取运行流程图

工作窃取算法的优点:

充分利用线程进行并行计算,减少了线程间的竞争。

工作窃取算法的缺点:

在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并
且该算法会消耗了更多的系统资源,比如创建多个线程和多个双端队列。

6.4.3 Fork/Join框架的设计

如何来设计??

步骤1 分割任务。
首先我们需要有一个fork类来把大任务分割成子任务,有可能子任务还是很大,所以还需要不停地分割,直到分割出的子任务足够小。

步骤2 执行任务并合并结果。
分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果都统一放在一个队列里,启动一个线程从队列里拿数据,然后合并这些数据。

Fork/Join使用两个类来完成以上两件事情。
①ForkJoinTask:
我们要使用ForkJoin框架,必须首先创建一个ForkJoin任务。它提供在任务中执行fork()和join()操作的机制。通常情况下,我们不需要直接继承ForkJoinTask类,只需要继承它的子类,Fork/Join框架提供了以下两个子类。
·RecursiveAction:用于没有返回结果的任务。
·RecursiveTask:用于有返回结果的任务。

②ForkJoinPool:ForkJoinTask需要通过ForkJoinPool来执行。
任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里暂时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。

6.4.4 使用Fork/Join框架
让我们通过一个简单的需求来使用Fork/Join框架,需求是:计算1+2+3+4的结果。

使用Fork/Join框架首先要考虑到的是如何分割任务,如果希望每个子任务最多执行两个数的相加,那么我们设置分割的阈值是2,由于是4个数字相加,所以Fork/Join框架会把这个任务fork成两个子任务,子任务一负责计算1+2,子任务二负责计算3+4,然后再join两个子任务的结果。因为是有结果的任务,所以必须继承RecursiveTask,实现代码如下。

package chapter6;

import java.util.concurrent.*;

/**
 * 利用fork/join框架
 * 样例
 */
public class ForkJoinMain extends RecursiveTask<Integer> {
    private static final int THRESHOLD = 2; // 阈值
    private int start;
    private int end;

    public ForkJoinMain(int start, int end) {
        this.start = start;
        this.end = end;
    }

    @Override
    protected Integer compute() {
        int sum = 0;
        // 如果任务足够小就计算任务
        boolean canCompute = (end - start) <= THRESHOLD;
        if (canCompute) {
            for (int i = start; i <= end; i++) {
                sum += i;
            }
        } else {
            // 如果任务大于阈值,就分裂成两个子任务计算
            int middle = (start + end) / 2;
            ForkJoinMain leftTask = new ForkJoinMain(start, middle);
            ForkJoinMain rightTask = new ForkJoinMain(middle + 1, end);
            // 执行子任务
            leftTask.fork();
            rightTask.fork();
            // 等待子任务执行完,合并结果
            int s1 = leftTask.join();
            int s2 = rightTask.join();
            // 合并结果
            sum = s1 + s2;
        }
        return sum;
    }


    public static void main(String[] args) {
        ForkJoinPool pool = new ForkJoinPool();
        // 生成一个任务
        ForkJoinMain task = new ForkJoinMain(1, 100);
        // 执行任务
        Future<Integer> res = pool.submit(task);
        try {
            System.out.println(res.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }
}

通过这个例子,我们进一步了解ForkJoinTask,ForkJoinTask与一般任务的主要区别在于它需要实现compute方法,在这个方法里,首先需要判断任务是否足够小,如果足够小就直接执行任务。如果不足够小,就必须分割成两个子任务,每个子任务在调用fork方法时,又会进入compute方法,看看当前子任务是否需要继续分割成子任务,如果不需要继续分割,则执行当前子任务并返回结果。使用join方法会等待子任务执行完并得到其结果。

6.4.5 Fork/Join框架的异常处理
ForkJoinTask在执行的时候可能会抛出异常,但是我们没办法在主线程里直接捕获异常所以ForkJoinTask提供了isCompletedAbnormally()方法来检查任务是否已经抛出异常或已经被取消了,并且可以通过ForkJoinTask的getException方法获取异常。使用如下代码。

if(task.isCompletedAbnormally())
{
System.out.println(task.getException());
}

getException方法返回Throwable对象,如果任务被取消了则返回CancellationException。如果任务没有完成或者没有抛出异常则返回null。

6.4.6 Fork/Join框架的实现原理

ForkJoinPool由ForkJoinTask数组和ForkJoinWorkerThread数组组成,ForkJoinTask数组负责将存放程序提交给ForkJoinPool的任务,而ForkJoinWorkerThread数组负责执行这些任务。

(1)ForkJoinTask的fork方法实现原理
当我们调用ForkJoinTask的fork方法时,程序会调用ForkJoinWorkerThread的pushTask方法异步地执行这个任务,然后立即返回结果。代码如下。

public final ForkJoinTask<V> fork() {
((ForkJoinWorkerThread) Thread.currentThread())
.pushTask(this);
return this;
}

pushTask方法把当前任务存放在ForkJoinTask数组队列里。然后再调用ForkJoinPool的signalWork()方法唤醒或创建一个工作线程来执行任务。代码如下。

final void pushTask(ForkJoinTask<> t) {
ForkJoinTask<>[] q; int s, m;
if ((q = queue) != null) { // ignore if queue removed
long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;
UNSAFE.putOrderedObject(q, u, t);
queueTop = s + 1; // or use putOrderedInt
if ((s -= queueBase) <= 2)
pool.signalWork();
else if (s == m)
growQueue();
}
}

(2)ForkJoinTask的join方法实现原理
Join方法的主要作用是阻塞当前线程并等待获取结果。让我们一起看看ForkJoinTask的join方法的实现,代码如下。

public final V join() {
if (doJoin() != NORMAL)
return reportResult();
else
return getRawResult();
}p
rivate V reportResult() {
int s; Throwable ex;
if ((s = status) == CANCELLED)
throw new CancellationException();
if (s == EXCEPTIONAL && (ex = getThrowableException()) != null)
UNSAFE.throwException(ex);
return getRawResult();
}

首先,它调用了doJoin()方法,通过doJoin()方法得到当前任务的状态来判断返回什么结果,任务状态有4种:已完成(NORMAL)、被取消(CANCELLED)、信号(SIGNAL)和出现异常(EXCEPTIONAL)。
·如果任务状态是已完成,则直接返回任务结果。
·如果任务状态是被取消,则直接抛出CancellationException。
·如果任务状态是抛出异常,则直接抛出对应的异常。
让我们再来分析一下doJoin()方法的实现代码。

private int doJoin() {
Thread t; ForkJoinWorkerThread w; int s; boolean completed;
if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
if ((s = status) < 0)
return s;
if ((w = (ForkJoinWorkerThread)t).unpushTask(this)) {
try {
completed = exec();
} catch (Throwable rex) {
return setExceptionalCompletion(rex);
}i
f (completed)
return setCompletion(NORMAL);
}r
eturn w.joinTask(this);
}e
lse
return externalAwaitDone();
}

在doJoin()方法里,首先通过查看任务的状态,看任务是否已经执行完成,如果执行完成,则直接返回任务状态;如果没有执行完,则从任务数组里取出任务并执行。如果任务顺利执行完成,则设置任务状态为NORMAL,如果出现异常,则记录异常,并将任务状态设置为EXCEPTIONAL。

相关文章

网友评论

      本文标题:第六章 并发容器和框架

      本文链接:https://www.haomeiwen.com/subject/dbbmihtx.html