吃掉tf2.0(1/n)更新中-- 结构化数据建模流程

作者: 粉红狐狸_dhf | 来源:发表于2020-08-11 14:41 被阅读0次
结构化数据建模流程.png

1 准备数据

准备数据.png

titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。

1.1 导入数据,明晰字段含义

结构化数据一般会使用Pandas中的DataFrame进行预处理。

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt
import tensorflow as tf 
from tensorflow.keras import models,layers

dftrain_raw = pd.read_csv('./data/titanic/train.csv')
dftest_raw = pd.read_csv('./data/titanic/test.csv')
dftrain_raw.head(10)

字段说明:

  • Survived:0代表死亡,1代表存活【y标签】
  • Pclass:乘客所持票类,有三种值(1,2,3) 【转换成onehot编码】
  • Name:乘客姓名 【舍去】
  • Sex:乘客性别 【转换成bool特征】
  • Age:乘客年龄(有缺失) 【数值特征,添加“年龄是否缺失”作为辅助特征】
  • SibSp:乘客兄弟姐妹/配偶的个数(整数值) 【数值特征】
  • Parch:乘客父母/孩子的个数(整数值)【数值特征】
  • Ticket:票号(字符串)【舍去】
  • Fare:乘客所持票的价格(浮点数,0-500不等) 【数值特征】
  • Cabin:乘客所在船舱(有缺失) 【添加“所在船舱是否缺失”作为辅助特征】
  • Embarked:乘客登船港口:S、C、Q(有缺失)【转换成onehot编码,四维度 S,C,Q,nan】

1.2 探索性数据分析EDA

label分布情况

%matplotlib inline
%config InlineBackend.figure_format = 'png'
ax = dftrain_raw['Survived'].value_counts().plot(kind = 'bar',
     figsize = (12,8),fontsize=15,rot = 0)
ax.set_ylabel('Counts',fontsize = 15)
ax.set_xlabel('Survived',fontsize = 15)
plt.show()
label.png

年龄分布情况

%matplotlib inline
%config InlineBackend.figure_format = 'png'
ax = dftrain_raw['Age'].plot(kind = 'hist',bins = 20,color= 'purple',
                    figsize = (12,8),fontsize=15)

ax.set_ylabel('Frequency',fontsize = 15)
ax.set_xlabel('Age',fontsize = 15)
plt.show()
age.png

年龄和label的相关性

%matplotlib inline
%config InlineBackend.figure_format = 'png'
ax = dftrain_raw.query('Survived == 0')['Age'].plot(kind = 'density',
                      figsize = (12,8),fontsize=15)
dftrain_raw.query('Survived == 1')['Age'].plot(kind = 'density',
                      figsize = (12,8),fontsize=15)
ax.legend(['Survived==0','Survived==1'],fontsize = 12)
ax.set_ylabel('Density',fontsize = 15)
ax.set_xlabel('Age',fontsize = 15)
plt.show()
年龄和label的相关性.png

** 对比三条线,可以看到40-80岁的中老年人把生存机会让给了0-18左右的青少年

1.3 数据预处理

def preprocessing(dfdata):

    dfresult= pd.DataFrame()

    #Pclass:乘客所持票类,有三种值(1,2,3) 【转换成onehot编码】
    dfPclass = pd.get_dummies(dfdata['Pclass'])
    dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ]
    dfresult = pd.concat([dfresult,dfPclass],axis = 1)

    #Sex
    dfSex = pd.get_dummies(dfdata['Sex'])
    dfresult = pd.concat([dfresult,dfSex],axis = 1)

    #Age:乘客年龄(有缺失) 【数值特征,添加“年龄是否缺失”作为辅助特征】
    dfresult['Age'] = dfdata['Age'].fillna(0)
    dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32')

    #SibSp,Parch,Fare 
    #SibSp:乘客兄弟姐妹/配偶的个数(整数值) 【数值特征】
    #Parch:乘客父母/孩子的个数(整数值)【数值特征】
    #Fare :乘客所持票的价格(浮点数,0-500不等) 【数值特征】
    dfresult['SibSp'] = dfdata['SibSp']
    dfresult['Parch'] = dfdata['Parch']
    dfresult['Fare'] = dfdata['Fare']

    #Carbin:乘客所在船舱(有缺失) 【添加“所在船舱是否缺失”作为辅助特征】
    dfresult['Cabin_null'] =  pd.isna(dfdata['Cabin']).astype('int32')

    #Embarked:乘客登船港口:S、C、Q(有缺失)【转换成onehot编码,四维度 S,C,Q,nan】
    dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True)
    dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]
    dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)

    return(dfresult)

x_train = preprocessing(dftrain_raw)
y_train = dftrain_raw['Survived'].values

x_test = preprocessing(dftest_raw)
y_test = dftest_raw['Survived'].values

print("x_train.shape =", x_train.shape )
print("x_test.shape =", x_test.shape )

x_train.shape = (712, 15), x_test.shape = (179, 15)

2 定义模型

使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。

此处选择使用最简单的Sequential,按层顺序模型。


定义模型.png
tf.keras.backend.clear_session()

model = models.Sequential()
model.add(layers.Dense(20,activation = 'relu',input_shape=(15,)))
model.add(layers.Dense(10,activation = 'relu' ))
model.add(layers.Dense(1,activation = 'sigmoid' ))

model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 20)                320       
_________________________________________________________________
dense_1 (Dense)              (None, 10)                210       
_________________________________________________________________
dense_2 (Dense)              (None, 1)                 11        
=================================================================
Total params: 541
Trainable params: 541
Non-trainable params: 0
_________________________________________________________________

3 训练模型

训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。


训练模型.png
# 二分类问题选择二元交叉熵损失函数
model.compile(optimizer='adam',
            loss='binary_crossentropy',
            metrics=[tf.keras.metrics.AUC()])

history = model.fit(x_train,y_train,
                    batch_size= 64,
                    epochs= 30,
                    validation_split=0.2 #分割一部分训练数据用于验证
                   )
history.history.keys() #dict_keys(['loss', 'auc_1', 'val_loss', 'val_auc_1'])

ROC & AUC
AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。
又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

4 评估模型

评估模型在训练集和验证集上的效果。


评估模型.png
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt

def plot_metric(history, metric):
    train_metrics = history.history[metric]
    val_metrics = history.history['val_'+metric]
    epochs = range(1, len(train_metrics) + 1)
    plt.plot(epochs, train_metrics, 'bo--')
    plt.plot(epochs, val_metrics, 'ro-')
    plt.title('Training and validation '+ metric)
    plt.xlabel("Epochs")
    plt.ylabel(metric)
    plt.legend(["train_"+metric, 'val_'+metric])
    plt.show()
plot_metric(history,"loss")
loss.png
plot_metric(history,"auc_1")
auc.png

我们再看一下模型在测试集上的效果.

model.evaluate(x = x_test,y = y_test)

5 使用模型

使用模型.png
#预测概率
model.predict(x_test[0:10])
#model(tf.constant(x_test[0:10].values,dtype = tf.float32)) #等价写法
#预测类别
model.predict_classes(x_test[0:10])

六,保存模型

可以使用Keras方式保存模型,也可以使用TensorFlow原生方式保存。前者仅仅适合使用Python环境恢复模型,后者则可以跨平台进行模型部署。

推荐使用后一种方式进行保存。


保存模型.png

1,Keras方式保存

# 保存模型结构及权重

model.save('./data/keras_model.h5')  

del model  #删除现有模型

# identical to the previous one
model = models.load_model('./data/keras_model.h5')
model.evaluate(x_test,y_test)
# 保存模型结构
json_str = model.to_json()

# 恢复模型结构
model_json = models.model_from_json(json_str)
#保存模型权重
model.save_weights('./data/keras_model_weight.h5')

# 恢复模型结构
model_json = models.model_from_json(json_str)
model_json.compile(
        optimizer='adam',
        loss='binary_crossentropy',
        metrics=['AUC']
    )

# 加载权重
model_json.load_weights('./data/keras_model_weight.h5')
model_json.evaluate(x_test,y_test)

2,TensorFlow原生方式保存

# 保存模型结构与模型参数到文件,该方式保存的模型具有跨平台性便于部署

model.save('./data/tf_model_savedmodel', save_format="tf")
print('export saved model.')

model_loaded = tf.keras.models.load_model('./data/tf_model_savedmodel')
model_loaded.evaluate(x_test,y_test)
# 保存权重,该方式仅仅保存权重张量
model.save_weights('./data/tf_model_weights.ckpt',save_format = "tf")

参考出处:
https://github.com/lyhue1991/eat_tensorflow2_in_30_days

相关文章

网友评论

    本文标题:吃掉tf2.0(1/n)更新中-- 结构化数据建模流程

    本文链接:https://www.haomeiwen.com/subject/debedktx.html