# -*- coding: utf-8 -*-
"""
项目参考:http://blog.nycdatascience.com/student-works/using-python-and-k-means-to-find-the-colors-in-movie-posters/
"""
from bs4 import BeautifulSoup
import requests
import re
import os
import skimage.io
import skimage.transform
import pandas as pd
from sklearn.cluster import KMeans
import numpy as np
# 路径申明
save_path = './images/'
kmeans_results_path = './kmeans_results'
# 主题色个数
n_main_color = 10
# 是否下载图片
is_download = False
def download_posters(image_type):
"""
下载电影海报并保存到本地
"""
print('正在下载{}类型的电影海报...'.format(image_type))
query = 'movie 2018 ' + image_type + ' poster'
url = 'http://global.bing.com/images/search?q=' + query + '&FORM=HDRSC2'
soup = BeautifulSoup(requests.get(url).text, 'lxml')
img_src_list = [a['src'] for a in soup.find_all('img', {'src': re.compile('mm.bing.net')})]
for i, img_src in enumerate(img_src_list):
img_data = skimage.io.imread(img_src)
if img_data is not None:
save_img_name = image_type + '_' + str(i + 1) + '.jpg'
skimage.io.imsave(os.path.join(save_path, save_img_name), img_data)
print('已下载{}张'.format(i + 1))
else:
print('该图像无效', img_src)
print()
def proc_img(img_filename):
"""
读取海报,并运行K-Means找出10个主要颜色
"""
img = skimage.io.imread(os.path.join(save_path, img_filename))
# 调整图片大小至 200 x 200
resized_img = skimage.transform.resize(img, (200, 200))
img_data = resized_img.reshape(-1, 3)
kmeans = KMeans(n_clusters=n_main_color)
kmeans.fit(img_data)
centers = kmeans.cluster_centers_
# 将每个像素值扩展到20x20x3的矩形框中,用于保存查看
color_block_size = 20
main_color_img = np.zeros((color_block_size * n_main_color, color_block_size, 3))
for i, center in enumerate(centers):
main_color_img[i * color_block_size: (i + 1) * color_block_size, :, :] = center
skimage.io.imsave(os.path.join(kmeans_results_path, img_filename), main_color_img)
# 保存数据到一行dataframe中
kmeans_result_df = pd.DataFrame()
kmeans_result_df['image name'] = [img_filename]
kmeans_result_df['movie type'] = [img_filename.split('_')[0]]
for i, center in enumerate(centers):
rgb_val = skimage.img_as_ubyte(center)
kmeans_result_df['color{}_R'.format(i + 1)] = [rgb_val[0]]
kmeans_result_df['color{}_G'.format(i + 1)] = [rgb_val[1]]
kmeans_result_df['color{}_B'.format(i + 1)] = [rgb_val[2]]
return kmeans_result_df
def run_main():
"""
主程序
"""
# 爬取电影海报
movie_types = ['horror', 'comedy', 'animation', 'action']
if is_download:
for movie_type in movie_types:
download_posters(movie_type)
# 读取每张海报,并运行K-Means找出每张海报的10个主要颜色,并构建数据集
img_filename_list = os.listdir(save_path)
result_df = pd.DataFrame()
for img_filename in img_filename_list:
print('正在处理', img_filename)
kmeans_result_df = proc_img(img_filename)
result_df = result_df.append(kmeans_result_df, ignore_index=True)
result_df.to_csv('./kmeans_results.csv', index=False)
if __name__ == '__main__':
run_main()
爬取得图片资源:
提取的每张图片的主色调:
网友评论