支持向量机SVM

作者: JasonChiu17 | 来源:发表于2018-11-25 14:55 被阅读0次

    原理

    • 寻找一个分割超平面来作为分类边界,找到离分割超平面最近的点,确保它们离分割超平面的距离尽可能远。
    • 支持向量就是离分割超平面最近的那些点

    优点:

    • 泛化错误率低,计算开销不大,结果易解释。

    缺点:

    • 对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。

    适用数据类型:

    • 数值型和标称型数据。

    简化版SMO算法

    #加载数据
    def loadData(path):
        #新建数据和标签列表
        dataList = [];labelList= []
        #获得文件指针
        fr = open(path)
        #一行一行读取
        for line in fr.readlines():
            #分割返回list
            lineList = line.strip().split()
            #取前1,2列作为训练数据
            dataList.append([float(lineList[0]),float(lineList[1])])
            #最后一列最为标签数据
            labelList.append(float(lineList[-1]))
        return dataList,labelList
    dataList,labelList = loadData('../../Reference Code/Ch06/testSet.txt')
    
    #随机选择alpha
    import random
    def selectJrand(i,m):     
        #这里可能随机取值会取到和i相等的值,为了j!=i,所以才先赋值j=1,再while循环
        j = i 
        while(j==i):
            j = int(random.uniform(0,m)) 
        return j
    
    j = selectJrand(1,6)
    # def selectJrand(m):
    #     j = int(random.uniform(0,m))
    #     return j
    # j = selectJrand(6)
    def clipAlpha(aj,H,L):
        if aj>H:
            aj = H
        if L>aj:
            aj = L
        return aj
    
    import sys
    print(sys.executable)
    
    /home/ubuntu/anaconda3/bin/python
    
    #简化版SMO
    import numpy as np
    def smoSimple(dataMatIn,classLabels,C,toler,maxIter):
        '''
        参数:
            dataMatIn:输入数据
            classLabels:标签
            C:惩罚项
            toler:错误容忍度
            maxIter:最大迭代次数
        返回:
            b:偏置项
            alphas:拉格朗日乘子
        '''
        #数据和标签转化为ndarray
        #等价于dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).T
        dataArray = np.array(dataMatIn); labelArray = np.array(classLabels).reshape(-1,1)
        #初始化b,获得数据矩阵的行列
        b = 0; m,n = shape(dataArray)
        #初始化alphas全为0向量
        alphas = np.zeros((m,1))
    
        #初始化迭代次数
        Iter =0
        #当迭代次数小于最大迭代次数
        while (Iter<maxIter):
            #alpha对
            alphaPairsChanged = 0
            #遍历每一个实例
            for i in range(m):
                #计算g(xi)
                '''
                两个array的相乘*指的是对应元素的相乘;两个array的dot表示矩阵的相乘。
                a=np.array([1,2])
                b=np.array([1,2])
                print(a*b) # [1 4]
                print(np.dot(a,b)) #5
                '''
                fXi = float(np.dot((alphas*labelArray).T,np.dot(dataArray,dataArray[i:i+1,:].T))) + b
                #计算Ei
                Ei = fXi - float(labelArray[i])
                #找到违反KKT条件的实例
                if ((labelArray[i]*Ei < toler) and (alphas[i] < C)) \
                or ((labelArray[i] *Ei > toler) and (alphas[i] > 0)):
                    #随机选择j,j!=i
                    j = selectJrand(i,m)
                    #计算g(xj)
                    '''
                    注意区别
                    shape(dataArray[1,:]) #(2, )
                    shape(dataArray[1,:].T)# (2, )
                    shape(dataArray[1:2,:].T)(2, 1)
                    '''
                    fXj = float(np.dot((alphas*labelArray).T,np.dot(dataArray,dataArray[j:j+1,:].T))) + b
                    #计算Ej
                    Ej = fXj - float(labelArray[j])
                    #赋值旧的alphai和alphaj
                    alphaIold = alphas[i].copy()
                    alphaJold = alphas[j].copy()
                    #若yi!=yj
                    if (labelArray[i] != labelArray[j]):
                        L = max(0, alphas[j] - alphas[i])
                        H = min(C, C + alphas[j] - alphas[i])
                    #若yi=yj
                    else:
                        L = max(0, alphas[j] + alphas[i] - C)
                        H = min(C, alphas[j] - alphas[i])
                    if L==H:print('L==H');continue
                    #计算eta,参考李航PP127
                    eta = 2.0*np.dot(dataArray[i],dataArray[j]) \
                    - np.dot(dataArray[i],dataArray[i])\
                    - np.dot(dataArray[j],dataArray[j])
                    if eta >= 0:print('eta>=0');continue
                    #跟新alphaj
                    alphas[j] -= labelArray[j]*(Ei - Ej)/eta
                    #若alphaj>H,则取H,若alphaj<L,则取L,若L<alphaj<H,则取alphaj.
                    alphas[j] = clipAlpha(alphas[j],H,L)
                    #判断alphaj是否有足够大的变化
                    if (abs(alphas[j] - alphaJold) < 0.00001):print('j not moving enough');continue
                    #跟新alphai
                    alphas[i] += labelArray[j]*labelArray[i]*(alphaJold - alphas[j])
                    #重新计算阈值b
                    b1 = b- Ei - labelArray[i]*(alphas[i] - alphaIold)*np.dot(dataArray[i],dataArray[i,:]) \
                    - labelArray[j]*(alphas[j] - alphaJold) * np.dot(dataArray[i],dataArray[j])
                    b2 = b- Ei - labelArray[i]*(alphas[i] - alphaIold)*np.dot(dataArray[i],dataArray[j]) \
                    - labelArray[j]*(alphas[j] - alphaJold) * np.dot(dataArray[j],dataArray[j])
                    if (0<alphas[i]) and (C>alphas[i]):b = b1
                    elif (0 < alphas[j]) and (C>alphas[j]): b = b2
                    else: b = (b1+b2)/2.0
                    #alpha对加一
                    alphaPairsChanged += 1
                    print("循环次数: {} alpha:{}, alpha对修改了 {} 次".format(Iter,i,alphaPairsChanged))
            if(alphaPairsChanged == 0): Iter += 1
            else: Iter = 0
            print("迭代次数: {}".format(Iter))
        return b,alphas
    
    dataList,labelList = loadData('../../Reference Code/Ch06/testSet.txt')
    b, alphas = smoSimple(dataList, labelList, 0.6, 0.001, 40)
    print('b= {}'.format(b))
    print('(支持向量对应的alpha>0)alpha>0\n{}'.format(alphas[alphas>0]))
    
    循环次数: 0 alpha:0, alpha对修改了 1 次
    循环次数: 0 alpha:2, alpha对修改了 2 次
    L==H
    j not moving enough
    循环次数: 0 alpha:6, alpha对修改了 3 次
    j not moving enough
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:22, alpha对修改了 4 次
    j not moving enough
    L==H
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    L==H
    L==H
    循环次数: 0 alpha:54, alpha对修改了 5 次
    循环次数: 0 alpha:55, alpha对修改了 6 次
    j not moving enough
    L==H
    j not moving enough
    L==H
    L==H
    迭代次数: 0
    j not moving enough
    j not moving enough
    L==H
    L==H
    L==H
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    L==H
    L==H
    L==H
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    L==H
    循环次数: 0 alpha:97, alpha对修改了 1 次
    迭代次数: 0
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:54, alpha对修改了 1 次
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:97, alpha对修改了 2 次
    迭代次数: 0
    j not moving enough
    循环次数: 0 alpha:13, alpha对修改了 1 次
    
    迭代次数: 25
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 26
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 27
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 28
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 29
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 30
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 31
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 32
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 33
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 34
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 35
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 36
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 37
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 38
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 39
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 40
    b= [-4.48392829]
    (支持向量对应的alpha>0)alpha>0
    [0.02485639 0.33967041 0.26285541 0.1016714 ]
    
    #打印支持向量
    for i in range(len(dataList)):
        if alphas[i]>0.0:
            print(dataList[i],labelList[i])
    
    [4.658191, 3.507396] -1
    [2.893743, -1.643468] -1
    [5.286862, -2.358286] 1
    [6.080573, 0.418886] 1
    
    import matplotlib.pyplot as plt
    import numpy as np
    def dataToShow(dataList,labelList,b,alphas):
        #array形式方便处理
        dataArray = np.array(dataList)
        alphasArray = np.array(alphas.tolist())
        #变成一列,-1表示自动计算多少行
        labelArray = np.array(labelList).reshape(-1,1)
        #正类负类分开画图,np.squeeze转化成一维的
        posData = dataArray[np.squeeze(labelArray>0.0)]    
        negData = dataArray[np.squeeze(labelArray<0.0)]
        svData = dataArray[np.squeeze(alphasArray>0.0)]
        plt.figure()
        plt.scatter(posData[:,0],posData[:,1],c='b',s=20)
        plt.scatter(negData[:,0],negData[:,1],c='r',s=20)
        plt.scatter(svData[:,0],svData[:,1],marker='o',c='',s=100,edgecolors='g')
        plt.legend(['Positive Point','Negatibe Poin','Support Vector'])
        #画分割超平面
        w = np.dot((alphasArray * labelArray).T, dataArray)
        x0 = np.array([2, 8])
        #分割线:w0*x0+w1*x1+b=0
        x1 = -(w[0, 0] * x0 + np.squeeze(np.array(b))) / w[0, 1]
        plt.plot(x0, x1, color = 'y')
        plt.ylim((-10,12))
        plt.show()
    dataToShow(dataList,labelList,b,alphas)
    
    output_7_0.png

    完整版SMO算法

    class optStructK:
        def __init__(self,dataMatIn, classLabels, C, toler):
            self.X = dataMatIn
            selef.labelMat = classLabels
            self.C = C
            self.tol = toler
            self.m = shape(dataMatIn)[0]
            self.alphas = np.zeros((self.m,1))
            self.b = 0
            self.eCache = np.zeros((self.m,2)) #误差缓存
    #计算Ei
    def calcEk(oS, k):
        fXk = float(np.dot((oS.alphas * oS.labelMat).T, np.dot(oS.X, oS.X[k:k+1,:].T))) + oS.b
        #计算Ej
        Ek = fXk - float(oS.labelMat[k])
        return Ek
    #内循环选择alpha
    def selectJK(i,oS,Ei):
        '''
        内循环选择alpha的启发式算法
        参数:
            i -- 外循环alpha的下标
            oS -- 类
            Ei -- 误差
        返回:
            j -- 选择alpha的下标
            Ej -- 误差
        '''
        #初始化
        maxK = -1;maxDeltaE = 0; Ej = 0
        oS.eCache[i] = [1,Ei]
        #选择合理的集合
        validEcacheList = np.nonzero(oS.eCache[:,0])[0]
        if (len(validEcacheList)) > 1:
            #选择最大步长的alpha
            for k in validEcacheList:
                #不重复计算
                if k == i: continue
                #计算误差
                Ek = calcEk(oS, k)
                #计算步长
                deltaE = abs(Ei - Ek)
                #记录最佳选择
                if (deltaE > maxDeltaE):
                    maxK = k;maxDeltaE = deltaE; Ej = Ek
            return maxK, Ej
        #没有合理值
        else:
            #随机选择
            j = select(i,oS.m)
            Ej = calcEk(oS,j)
        return j,Ej
    
    def updateEkK(oS,k):
        #在alpha更新后存储计算得到的误差
        Ek = calcEk(oS,k)
        oS.eCache[k] = [1,Ek]
    def innerLK(i, oS):
        #计算误差
        Ei = calcEkK(oS, i)
        #找出不满足KKT条件的alpha
        if ((oS.labelMat[i, 0]*Ei < -oS.tol) and (oS.alphas[i, 0] < oS.C)) or ((oS.labelMat[i, 0]*Ei > oS.tol) and (oS.alphas[i, 0] > 0)):
            #选择j
            j,Ej = selectJK(i, oS, Ei)
            #存储旧的值
            alphaIold = oS.alphas[i, 0].copy(); alphaJold = oS.alphas[j, 0].copy();
            #两种情况求边界值
            if (oS.labelMat[i, 0] != oS.labelMat[j, 0]):
                L = max(0, oS.alphas[j, 0] - oS.alphas[i, 0])
                H = min(oS.C, oS.C + oS.alphas[j, 0] - oS.alphas[i, 0])
            else:
                L = max(0, oS.alphas[j, 0] + oS.alphas[i, 0] - oS.C)
                H = min(oS.C, oS.alphas[j, 0] + oS.alphas[i, 0])
            if L==H: return 0
            #计算变化量
            eta = 2.0 * np.dot(oS.X[i:i+1,:], oS.X[j:j+1,:].T) - np.dot(oS.X[i:i+1,:], oS.X[i:i+1,:].T) - np.dot(oS.X[j:j+1,:], oS.X[j:j+1,:].T)
            if eta >= 0: return 0
            #更新alpha
            oS.alphas[j, 0] -= oS.labelMat[j, 0]*(Ei - Ej)/eta
            #约束alpha
            oS.alphas[j, 0] = clipAlpha(oS.alphas[j, 0],H,L)
            updateEkK(oS, j)
            if (abs(oS.alphas[j, 0] - alphaJold) < 0.00001): return 0
            oS.alphas[i, 0] += oS.labelMat[j, 0]*oS.labelMat[i, 0]*(alphaJold - oS.alphas[j, 0])
            updateEkK(oS, i)
            b1 = oS.b - Ei- oS.labelMat[i, 0]*(oS.alphas[i, 0]-alphaIold)*np.dot(oS.X[i:i+1,:], oS.X[i:i+1,:].T) - oS.labelMat[j, 0]*(oS.alphas[j, 0]-alphaJold)*np.dot(oS.X[i:i+1,:], oS.X[j:j+1,:].T)
            b2 = oS.b - Ej- oS.labelMat[i, 0]*(oS.alphas[i, 0]-alphaIold)*np.dot(oS.X[i:i+1,:], oS.X[j:j+1,:].T) - oS.labelMat[j, 0]*(oS.alphas[j, 0]-alphaJold)*np.dot(oS.X[j:j+1,:], oS.X[j:j+1,:].T)
            if (0 < oS.alphas[i, 0]) and (oS.C > oS.alphas[i, 0]): oS.b = b1
            elif (0 < oS.alphas[j, 0]) and (oS.C > oS.alphas[j, 0]): oS.b = b2
            else: oS.b = (b1 + b2)/2.0
            return 1
        else: return 0
    def smoPK(dataMatIn, classLabels, C, toler, maxIter):
        #建立类变量
        oS = optStructK(np.array(dataMatIn),np.array(classLabels).reshape(-1, 1),C,toler)
        iter = 0
        entireSet = True; alphaPairsChanged = 0
        #执行循环
        while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
            alphaPairsChanged = 0
            if entireSet:
                #遍历所有
                for i in range(oS.m):        
                    alphaPairsChanged += innerLK(i,oS)
                    #print("fullSet, iter: {} i:{}, pairs changed {}".format(iter,i,alphaPairsChanged))
                iter += 1
            else:
                #遍历非边界值
                nonBoundIs = np.nonzero((oS.alphas > 0) * (oS.alphas < C))[0]
                for i in nonBoundIs:
                    alphaPairsChanged += innerLK(i,oS)
                    #print("non-bound, iter: {} i:{}, pairs changed {}".format(iter,i,alphaPairsChanged))
                iter += 1
            if entireSet: entireSet = False 
            elif (alphaPairsChanged == 0): entireSet = True  
            #print("iteration number: {}".format(iter))
        return oS.b,oS.alphas
    
    dataList,labelList = loadData('../../Reference Code/Ch06/testSet.txt')
    b, alphas = smoSimple(dataList, labelList, 0.6, 0.001, 40)
    print('b= {}'.format(b))
    print('(支持向量对应的alpha>0)alpha>0\n{}'.format(alphas[alphas>0]))
    
    循环次数: 0 alpha:0, alpha对修改了 1 次
    L==H
    循环次数: 0 alpha:4, alpha对修改了 2 次
    j not moving enough
    循环次数: 0 alpha:6, alpha对修改了 3 次
    L==H
    j not moving enough
    L==H
    循环次数: 0 alpha:25, alpha对修改了 4 次
    L==H
    循环次数: 0 alpha:29, alpha对修改了 5 次
    L==H
    循环次数: 0 alpha:52, alpha对修改了 6 次
    j not moving enough
    循环次数: 0 alpha:55, alpha对修改了 7 次
    L==H
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 0
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    L==H
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    循环次数: 0 alpha:52, alpha对修改了 1 次
    j not moving enough
    循环次数: 0 alpha:55, alpha对修改了 2 次
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:76, alpha对修改了 3 次
    j not moving enough
    L==H
    L==H
    迭代次数: 0
    循环次数: 0 alpha:0, alpha对修改了 1 次
    j not moving enough
    j not moving enough
    L==H
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:96, alpha对修改了 2 次
    j not moving enough
    迭代次数: 0
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:8, alpha对修改了 1 次
    循环次数: 0 alpha:10, alpha对修改了 2 次
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    L==H
    循环次数: 0 alpha:54, alpha对修改了 3 次
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 0
    j not moving enough
    循环次数: 0 alpha:5, alpha对修改了 1 次
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:17, alpha对修改了 2 次
    L==H
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    L==H
    L==H
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    L==H
    迭代次数: 0
    j not moving enough
    循环次数: 0 alpha:5, alpha对修改了 1 次
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:29, alpha对修改了 2 次
    j not moving enough
    循环次数: 0 alpha:52, alpha对修改了 3 次
    循环次数: 0 alpha:54, alpha对修改了 4 次
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 0
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:54, alpha对修改了 1 次
    j not moving enough
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:86, alpha对修改了 2 次
    L==H
    L==H
    j not moving enough
    L==H
    j not moving enough
    迭代次数: 0
    j not moving enough
    j not moving enough
    循环次数: 0 alpha:5, alpha对修改了 1 次
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    
    
    迭代次数: 38
    j not moving enough
    j not moving enough
    j not moving enough
    j not moving enough
    迭代次数: 39
    j not moving enough
    j not moving enough
    L==H
    j not moving enough
    迭代次数: 40
    b= [-4.65074859]
    (支持向量对应的alpha>0)alpha>0
    [0.11699604 0.29638533 0.41338137]
    
    dataToShow(dataList,labelList,b,alphas)
    
    output_12_0.png

    引入核函数

    def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
        m,n = shape(X)
        K = mat(zeros((m,1)))
        if kTup[0]=='lin': K = X * A.T   #linear kernel
        elif kTup[0]=='rbf':
            for j in range(m):
                deltaRow = X[j,:] - A
                K[j] = np.dot(deltaRow, deltaRow.T)
            K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
        else: raise NameError('Houston We Have a Problem -- \
        That Kernel is not recognized')
        return K
    class optStruct:
        def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters 
            self.X = dataMatIn
            self.labelMat = classLabels
            self.C = C
            self.tol = toler
            self.m = shape(dataMatIn)[0]
            self.alphas = mat(zeros((self.m,1)))
            self.b = 0
            self.eCache = mat(zeros((self.m,2))) #first column is valid flag
            self.K = mat(zeros((self.m,self.m)))
            for i in range(self.m):
                self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
    def calcEk(oS, k):
        fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
        Ek = fXk - float(oS.labelMat[k])
        return Ek
    def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
        maxK = -1; maxDeltaE = 0; Ej = 0
        oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
        validEcacheList = nonzero(oS.eCache[:,0].A)[0]
        if (len(validEcacheList)) > 1:
            for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
                if k == i: continue #don't calc for i, waste of time
                Ek = calcEk(oS, k)
                deltaE = abs(Ei - Ek)
                if (deltaE > maxDeltaE):
                    maxK = k; maxDeltaE = deltaE; Ej = Ek
            return maxK, Ej
        else:   #in this case (first time around) we don't have any valid eCache values
            j = selectJrand(i, oS.m)
            Ej = calcEk(oS, j)
        return j, Ej
    def updateEk(oS, k):#after any alpha has changed update the new value in the cache
        Ek = calcEk(oS, k)
        oS.eCache[k] = [1,Ek]
    def innerL(i, oS):
        Ei = calcEk(oS, i)
        if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
            j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
            alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
            if (oS.labelMat[i] != oS.labelMat[j]):
                L = max(0, oS.alphas[j] - oS.alphas[i])
                H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
            else:
                L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
                H = min(oS.C, oS.alphas[j] + oS.alphas[i])
            if L==H: return 0
            eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
            if eta >= 0: return 0
            oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
            oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
            updateEk(oS, j) #added this for the Ecache
            if (abs(oS.alphas[j] - alphaJold) < 0.00001): return 0
            oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
            updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
            b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
            b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
            if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
            elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
            else: oS.b = (b1 + b2)/2.0
            return 1
        else: return 0
    def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
        oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
        iter = 0
        entireSet = True; alphaPairsChanged = 0
        while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
            alphaPairsChanged = 0
            if entireSet:   #go over all
                for i in range(oS.m):        
                    alphaPairsChanged += innerL(i,oS)
                    #print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
                iter += 1
            else:#go over non-bound (railed) alphas
                nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
                for i in nonBoundIs:
                    alphaPairsChanged += innerL(i,oS)
                    #print( "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
                iter += 1
            if entireSet: entireSet = False #toggle entire set loop
            elif (alphaPairsChanged == 0): entireSet = True  
            #print( "iteration number: %d" % iter)
        return oS.b,oS.alphas
    def calcWs(alphas,dataArr,classLabels):
        X = mat(dataArr); labelMat = mat(classLabels).transpose()
        m,n = shape(X)
        w = zeros((n,1))
        for i in range(m):
            w += multiply(alphas[i]*labelMat[i],X[i,:].T)
        return w
    

    测试

    def testRbf(k1=1.3):
        dataArr,labelArr  = loadData('../../Reference Code/Ch06/testSetRBF.txt')
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd=nonzero(alphas.A>0)[0]
        sVs=datMat[svInd] #get matrix of only support vectors
        labelSV = labelMat[svInd];
        print( "there are %d Support Vectors" % shape(sVs)[0])
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print( "the training error rate is: %f" % (float(errorCount)/m))
        dataArr,labelArr = loadData('../../Reference Code/Ch06/testSetRBF2.txt')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print( "the test error rate is: %f" % (float(errorCount)/m) )
        return b,alphas
    
    import matplotlib.pyplot as plt
    import numpy as np
    def dataToShow(dataList,labelList,b,alphas):
        #array形式方便处理
        dataArray = np.array(dataList)
        alphasArray = np.array(alphas.tolist())
        #变成一列,-1表示自动计算多少行
        labelArray = np.array(labelList).reshape(-1,1)
        #正类负类分开画图,np.squeeze转化成一维的
        posData = dataArray[np.squeeze(labelArray>0.0)]    
        negData = dataArray[np.squeeze(labelArray<0.0)]
        svData = dataArray[np.squeeze(alphasArray>0.0)]
        plt.figure()
        plt.scatter(posData[:,0],posData[:,1],c='b',s=20)
        plt.scatter(negData[:,0],negData[:,1],c='r',s=20)
        plt.scatter(svData[:,0],svData[:,1],marker='o',c='',s=100,edgecolors='g')
        plt.legend(['Positive Point','Negatibe Poin','Support Vector'])
    #     #画分割超平面
    #     w = np.dot((alphasArray * labelArray).T, dataArray)
    #     x0 = np.array([2, 8])
    #     #分割线:w0*x0+w1*x1+b=0
    #     x1 = -(w[0, 0] * x0 + np.squeeze(np.array(b))) / w[0, 1]
    #     plt.plot(x0, x1, color = 'y')
    #     plt.ylim((-10,12))
        plt.show()
    
    
    
    dataList,labelList  = loadData('../../Reference Code/Ch06/testSetRBF.txt')
    
    b,alphas = testRbf(k1=1.3)
    dataToShow(dataList,labelList,b,alphas)
    
    there are 29 Support Vectors
    the training error rate is: 0.130000
    the test error rate is: 0.150000
    
    output_19_1.png
    b,alphas = testRbf(k1=0.1)
    dataToShow(dataList,labelList,b,alphas)
    
    there are 84 Support Vectors
    the training error rate is: 0.000000
    the test error rate is: 0.090000
    
    output_20_1.png

    手写识别

    def img2vector(filename):
        returnVect = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[0,32*i+j] = int(lineStr[j])
        return returnVect
    
    def loadImages(dirName):
        from os import listdir
        hwLabels = []
        trainingFileList = listdir(dirName)           #load the training set
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]     #take off .txt
            classNumStr = int(fileStr.split('_')[0])
            if classNumStr == 9: hwLabels.append(-1)
            else: hwLabels.append(1)
            trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
        return trainingMat, hwLabels    
    
    def testDigits(kTup=('rbf', 10)):
        dataArr,labelArr = loadImages('../../../Week1/Reference Code/trainingDigits')
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd=nonzero(alphas.A>0)[0]
        sVs=datMat[svInd] 
        labelSV = labelMat[svInd];
        print("there are %d Support Vectors" % shape(sVs)[0])
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print("the training error rate is: %f" % (float(errorCount)/m))
        dataArr,labelArr = loadImages('../../../Week1/Reference Code/testDigits')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print("the test error rate is: %f" % (float(errorCount)/m)) 
    
    testDigits(('rbf', 20))
    
    there are 204 Support Vectors
    the training error rate is: 0.000000
    the test error rate is: 0.010571
    

    相关文章

      网友评论

        本文标题:支持向量机SVM

        本文链接:https://www.haomeiwen.com/subject/diupqqtx.html