iOS算法之堆排序

作者: 一个人在路上走下去 | 来源:发表于2016-07-30 14:39 被阅读715次
    堆排序

    详细代码请参考Algorithm。参考代码比文字好理解。

    堆排序是时间复杂度为O(N*lgN)的排序方法。是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种,可以利用数组的特点快速定位指定索引的元素,是完全二叉树。基本思想是把待排序的元素按照大小在二叉树位置上排列,排序好的元素要满足:父节点的元素要大于等于其子节点;这个过程叫做堆化过程,如果根节点存放的是最大的数,则叫做大根堆;如果是最小的数,自然就叫做小根堆了。根据这个特性(大根堆根最大,小根堆根最小),就可以把根节点拿出来,然后再堆化下,再把根节点拿出来,循环到最后一个节点,就排序好了。

    整个排序主要核心就是堆化过程,堆化过程一般是用父节点和他的孩子节点进行比较,取最大的孩子节点和其进行交换;但是要注意这应该是个逆序的,先排序好子树的顺序,然后再一步步往上,到排序根节点上。然后又相反(因为根节点也可能是很小的)的,从根节点往子树上排序。最后才能把所有元素排序好。

    由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。堆排序是就地排序,辅助空间为O(1).它是不稳定的排序方法。(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素的话,排序前和排序后他们的相对位置不发生变化)

    堆的存储

    一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

    堆的操作——插入删除

    每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中。

    堆的删除,按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。


    堆排序

    堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。

    大根堆和小根堆

    根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆,又称最小堆。根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆,又称最大堆。堆中任一子树亦是堆。堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。

    大根堆排序算法的基本操作:
    ①建堆,建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程,相当于o(h1)+o(h2)…+o(hlen/2) 其中h表示节点的深度,len/2表示节点的个数,这是一个求和的过程,结果是线性的O(n)。

    ②调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点left(i),right(i),选出三者最大(或者最小)者,如果最大(小)值不是节点i而是它的一个孩子节点,那边交互节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作,因为是沿着深度方向进行调整的。

    ③堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆。然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是O(nlgn)。因为建堆的时间复杂度是O(n)(调用一次);调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn)。

    相关文章

      网友评论

      • 小包包包:那个图慢一点就好了,太快了,还没有反应过来,就排完了

      本文标题:iOS算法之堆排序

      本文链接:https://www.haomeiwen.com/subject/doqtsttx.html