排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:
![](https://img.haomeiwen.com/i5117449/6d42ed5e8a231aad.png)
冒泡排序
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
算法步骤
1、比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2、对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
3、针对所有的元素重复以上的步骤,除了最后一个。
4、持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
var arr = [9,1,5,23,-1,2,14,6];
console.log(arr);
bubbleSort(arr);
console.log(arr);
function bubbleSort(arr) {
var len = arr.length;
for (var i = 0; i < len - 1; i++) {
/* debugger*/
for (var j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j+1]) { // 相邻元素两两对比
var temp = arr[j+1]; // 元素交换
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
//上面的冒泡排序最好的情况(数据排列正序)也是O(n^2)的时间复杂度
//可以改进一下,加一个flag判断,如果已经排好序了,就退出循环
function bubbleSort(arr) {
var len = arr.length;
var flag;
for (var i = 0; i < len - 1; i++) {
/* debugger*/
flag = false;
for (var j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j+1]) { // 相邻元素两两对比
var temp = arr[j+1]; // 元素交换
arr[j+1] = arr[j];
arr[j] = temp;
flag = true; //有变动,则变更flag
}
}
if(flag === false) return arr;
}
return arr;
}
选择排序
选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。
算法步骤
1、首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
2、再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
3、重复第二步,直到所有元素均排序完毕。
function selectionSort(arr) {
var len = arr.length;
var minIndex, temp;
for (var i = 0; i < len - 1; i++) {
/*debugger*/
minIndex = i;
for (var j = i + 1; j < len; j++) {
if (arr[j] < arr[minIndex]) { // 寻找最小的数
minIndex = j; // 将最小数的索引保存
}
}
temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
return arr;
}
插入排序
插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。拆半插入排序所需要的辅助空间和直接插入排序相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。它可以更快的确定第i个元素的插入位置。会快一些,但时间复杂度仍为O(n^2)
算法步骤
1、将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
2、从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
function insertionSort(arr) {
var len = arr.length;
var preIndex, current;
for (var i = 1; i < len; i++) {
//debugger
preIndex = i - 1;
current = arr[i];
while(preIndex >= 0 && arr[preIndex] > current) {
arr[preIndex+1] = arr[preIndex];
preIndex--;
}
arr[preIndex+1] = current;
}
return arr;
}
希尔排序
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。
算法步骤
1、选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
2、按增量序列个数 k,对序列进行 k 趟排序;
3、每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
function shellSort(arr) {
var len = arr.length,
temp,
gap = 1;
//debugger
while(gap < len/3) { //动态定义间隔序列
gap =gap*3+1;
}
for (gap; gap > 0; gap = Math.floor(gap/3)) {
for (var i = gap; i < len; i++) {
temp = arr[i];
for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {
arr[j+gap] = arr[j];
}
arr[j+gap] = temp;
}
}
return arr;
}
//换一个增量因子值
function shellSort(array) {
function swap(array, i, k) {
var temp = array[i];
array[i] = array[k];
array[k] = temp;
}
var length = array.length,
gap = Math.floor(length / 2);
while (gap > 0) {
for (var i = gap; i < length; i++) {
for (var j = i; 0 < j; j -= gap) {
if (array[j - gap] > array[j]) {
swap(array, j - gap, j);
} else {
break;
}
}
}
gap = Math.floor(gap / 2);
}
return array;
}
归并排序
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
算法步骤
1、申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
2、设定两个指针,最初位置分别为两个已经排序序列的起始位置;
3、比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
4、重复步骤 3 直到某一指针达到序列尾;
5、将另一序列剩下的所有元素直接复制到合并序列尾。
function mergeSort(arr) { // 采用自上而下的递归方法
var len = arr.length;
if(len < 2) {
return arr;
}
debugger
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right)
{
var result = [];
while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}
快速排序
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看, 快速排序应该算是在冒泡排序基础上的递归分治法。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好。
快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
算法步骤
1、从数列中挑出一个元素,称为 “基准”(pivot);
2、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
3、递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
var arr = [9,1,5,23,-1,2,14,6];
console.log(arr);
quick_sort(arr,0,arr.length-1);
console.log(arr);
//两个指针交替走,
//逻辑上是缓存left值,右边指针往左走,直到找到比缓存值更小的数,交换两个指针当前位置的值。
//然后左边指针往右走,直到找到比缓存值更大的数,交换两个指针当前位置的值。
//再轮到右边指针往左走。。。
//重复上面步骤,直到指针相遇,相遇的位置就是缓存值应该放的位置。
//因为左边的数比缓存值小,右边数比缓存值大。
function quick_sort(s, left, right)
{
//debugger
if (left < right)
{
var i = left,
j = right,
temp= s[left]; //保存的是左边的值,要从右边开始找
//否则找到两个指针相遇时会丢失一个数
while (i < j)
{
while(i < j && s[j] >=temp){
// 从右向左找第一个小于x的数,不小于就跳过(j--)
//找到数据就交换位置
j--;
}
s[i] = s[j];
while(i < j && s[i] < temp) {
// 从左向右找第一个大于等于x的数
i++;
}
s[j] = s[i];
}
s[i] = temp;
//上面执行完后,i位置的数的位置就是对的了,
//因为前面的数比s[i]小,后面的数比s[i]大
//下面对i两边的数据递归处理
quick_sort(s, left, i - 1);
quick_sort(s, i + 1, right);
}
}
堆排序
待补充
计数排序
待补充
桶排序
待补充
基数排序
待补充
转载自十大经典排序算法
注:
算法的稳定性:
通俗地讲就是能保证排序前两个相等的数据其在序列中的先后位置顺序与排序后它们两个先后位置顺序相同。
再简单具体一点,如果A i == A j,Ai 原来在 Aj 位置前,排序后 Ai 仍然是在 Aj 位置前。
稳定性的好处:
(1)如果排序算法是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所利用。
基数排序就是这样,先按低位排序,逐次按高位排序,那么,低位相同的数据元素其先后位置顺序即使在高位也相同时是不会改变的。
(2)学习排序原理时,可能编的程序里面要排序的元素都是简单类型,实际上真正应用时,可能是对一个复杂类型(自定义类型)的数组排序,
而排序的键值仅仅只是这个元素中的一个属性,对于一个简单类型,数字值就是其全部意义,即使交换了也看不出什么不同。
但是,对于复杂类型,交换的话可能就会使原本不应该交换的元素交换了。比如:一个“学生”数组,欲按照年龄排序,“学生”这个对象不仅含有“年龄”,还有其它很多属性。
假使原数组是把学号作为主键由小到大进行的数据整理。而稳定的排序会保证比较时,如果两个学生年龄相同,一定不会交换。
那也就意味着尽管是对“年龄”进行了排序,但是学号顺序仍然是由小到大的要求。
网友评论