1、成对分析
常规用法
rm(list=ls())
suppressMessages(library(ggpubr))
suppressMessages(library(tidyverse))
suppressMessages(library(vcd))
my_comparisons <- list(c("control", "treatment"))
ggpaired(comb_fre_new, x = "xj", y ="percentage",ylab ="Gene 3' UTR Modification Frequence\n(% of Total Modificantion Events)",
line.color = "gray", line.size = 0.05,
palette = "npg"#c("#0A5EB9","#DF3D8C"
)
p<-p+stat_compare_means(comparisons = my_comparisons,
paired = T,method = "t.test",position = "identity",label = "p.signif")
做完是一根线,所以进阶改良(还是ggplot2 靠谱)
主要就是定义一个数xj 让它实现偏移
comb_fre_new$Group <- factor(comb_fre_new$Group, levels=unique(comb_fre_new$Group))
comb_fre_new$"x"<-c(rep(1,nrow(fed_fre)),rep(2,nrow(fasting_fre)))
comb_fre_new$xj <- jitter(comb_fre_new$x, amount=.04)
p<-ggplot(data=comb_fre_new, aes(y=percentage)) +
geom_boxplot(aes(x=Group, group=Group), width=0.2, outlier.shape = NA) +
geom_point(aes(x=xj,colour = factor(Group))) + scale_colour_manual(name="",values = c("control"="#0A5EB9", "treatment"="#DF3D8C"))+
geom_line(aes(x=xj, group=gene_name),size=0.05,color="gray") +theme_bw()
2、相关性分析
suppressMessages(library(ggpubr))
sp<-ggscatter(utr3_mean, x = "control", y = "treatment",
add.params = list(color = "black",linetype="dashed"), # Customize reg. line
add = "reg.line", # Add regressin line
conf.int = F,color ="#54C6DC",
ellipse.alpha=0.5,
xlab = "control",
ylab="treatment",
label = "Gene_symbol",
label.select = targets,
repel = T,
font.label = c(11, "bold", "#f16446")
)
sp<-sp + stat_cor(method = "pearson")
网友评论