美文网首页
用 Python 实现全连接神经网络(Multi-layer P

用 Python 实现全连接神经网络(Multi-layer P

作者: bdd1b3ad7323 | 来源:发表于2017-10-13 22:26 被阅读318次

    代码

    import numpy as np
    
    # 各种激活函数及导数
    def sigmoid(x):
        return 1 / (1 + np.exp(-x))
    
    
    def dsigmoid(y):
        return y * (1 - y)
    
    
    def tanh(x):
        return np.tanh(x)
    
    
    def dtanh(y):
        return 1.0 - y ** 2
    
    
    def relu(y):
        tmp = y.copy()
        tmp[tmp < 0] = 0
        return tmp
    
    
    def drelu(x):
        tmp = x.copy()
        tmp[tmp >= 0] = 1
        tmp[tmp < 0] = 0
        return tmp
    
    
    class MLPClassifier(object):
        """多层感知机,BP 算法训练"""
    
        def __init__(self,
                     layers,
                     activation='tanh',
                     epochs=20, batch_size=1, learning_rate=0.01):
            """
            :param layers: 网络层结构
            :param activation: 激活函数
            :param epochs: 迭代轮次
            :param learning_rate: 学习率 
            """
            self.epochs = epochs
            self.learning_rate = learning_rate
            self.layers = []
            self.weights = []
            self.batch_size = batch_size
    
            for i in range(0, len(layers) - 1):
                weight = np.random.random((layers[i], layers[i + 1]))
                layer = np.ones(layers[i])
                self.layers.append(layer)
                self.weights.append(weight)
            self.layers.append(np.ones(layers[-1]))
    
            self.thresholds = []
            for i in range(1, len(layers)):
                threshold = np.random.random(layers[i])
                self.thresholds.append(threshold)
    
            if activation == 'tanh':
                self.activation = tanh
                self.dactivation = dtanh
            elif activation == 'sigomid':
                self.activation = sigmoid
                self.dactivation = dsigmoid
            elif activation == 'relu':
                self.activation = relu
                self.dactivation = drelu
    
        def fit(self, X, y):
            """
            :param X_: shape = [n_samples, n_features] 
            :param y: shape = [n_samples] 
            :return: self
            """
            for _ in range(self.epochs * (X.shape[0] // self.batch_size)):
                i = np.random.choice(X.shape[0], self.batch_size)
                # i = np.random.randint(X.shape[0])
                self.update(X[i])
                self.back_propagate(y[i])
    
        def predict(self, X):
            """
            :param X: shape = [n_samples, n_features] 
            :return: shape = [n_samples]
            """
            self.update(X)
            return self.layers[-1].copy()
    
        def update(self, inputs):
            self.layers[0] = inputs
            for i in range(len(self.weights)):
                next_layer_in = self.layers[i] @ self.weights[i] - self.thresholds[i]
                self.layers[i + 1] = self.activation(next_layer_in)
    
        def back_propagate(self, y):
            errors = y - self.layers[-1]
    
            gradients = [(self.dactivation(self.layers[-1]) * errors).sum(axis=0)]
    
            self.thresholds[-1] -= self.learning_rate * gradients[-1]
            for i in range(len(self.weights) - 1, 0, -1):
                tmp = np.sum(gradients[-1] @ self.weights[i].T * self.dactivation(self.layers[i]), axis=0)
                gradients.append(tmp)
                self.thresholds[i - 1] -= self.learning_rate * gradients[-1] / self.batch_size
            gradients.reverse()
            for i in range(len(self.weights)):
                tmp = np.mean(self.layers[i], axis=0)
                self.weights[i] += self.learning_rate * tmp.reshape((-1, 1)) * gradients[i]
    

    测试代码

    import sklearn.datasets
    import numpy as np
    
    def plot_decision_boundary(pred_func, X, y, title=None):
        """分类器画图函数,可画出样本点和决策边界
        :param pred_func: predict函数
        :param X: 训练集X
        :param y: 训练集Y
        :return: None
        """
    
        # Set min and max values and give it some padding
        x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        h = 0.01
        # Generate a grid of points with distance h between them
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole gid
        Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
        plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
    
        if title:
            plt.title(title)
        plt.show()
    
    
    def test_mlp():
        X, y = sklearn.datasets.make_moons(200, noise=0.20)
        y = y.reshape((-1, 1))
        n = MLPClassifier((2, 3, 1), activation='tanh', epochs=300, learning_rate=0.01)
        n.fit(X, y)
        def tmp(X):
            sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0)
            ans = sign(n.predict(X))
            return ans
    
        plot_decision_boundary(tmp, X, y, 'Neural Network')
    

    效果

    tanh relu

    更多机器学习代码,请访问 https://github.com/WiseDoge/plume

    相关文章

      网友评论

          本文标题:用 Python 实现全连接神经网络(Multi-layer P

          本文链接:https://www.haomeiwen.com/subject/dqmtuxtx.html