代码
import numpy as np
# 各种激活函数及导数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def dsigmoid(y):
return y * (1 - y)
def tanh(x):
return np.tanh(x)
def dtanh(y):
return 1.0 - y ** 2
def relu(y):
tmp = y.copy()
tmp[tmp < 0] = 0
return tmp
def drelu(x):
tmp = x.copy()
tmp[tmp >= 0] = 1
tmp[tmp < 0] = 0
return tmp
class MLPClassifier(object):
"""多层感知机,BP 算法训练"""
def __init__(self,
layers,
activation='tanh',
epochs=20, batch_size=1, learning_rate=0.01):
"""
:param layers: 网络层结构
:param activation: 激活函数
:param epochs: 迭代轮次
:param learning_rate: 学习率
"""
self.epochs = epochs
self.learning_rate = learning_rate
self.layers = []
self.weights = []
self.batch_size = batch_size
for i in range(0, len(layers) - 1):
weight = np.random.random((layers[i], layers[i + 1]))
layer = np.ones(layers[i])
self.layers.append(layer)
self.weights.append(weight)
self.layers.append(np.ones(layers[-1]))
self.thresholds = []
for i in range(1, len(layers)):
threshold = np.random.random(layers[i])
self.thresholds.append(threshold)
if activation == 'tanh':
self.activation = tanh
self.dactivation = dtanh
elif activation == 'sigomid':
self.activation = sigmoid
self.dactivation = dsigmoid
elif activation == 'relu':
self.activation = relu
self.dactivation = drelu
def fit(self, X, y):
"""
:param X_: shape = [n_samples, n_features]
:param y: shape = [n_samples]
:return: self
"""
for _ in range(self.epochs * (X.shape[0] // self.batch_size)):
i = np.random.choice(X.shape[0], self.batch_size)
# i = np.random.randint(X.shape[0])
self.update(X[i])
self.back_propagate(y[i])
def predict(self, X):
"""
:param X: shape = [n_samples, n_features]
:return: shape = [n_samples]
"""
self.update(X)
return self.layers[-1].copy()
def update(self, inputs):
self.layers[0] = inputs
for i in range(len(self.weights)):
next_layer_in = self.layers[i] @ self.weights[i] - self.thresholds[i]
self.layers[i + 1] = self.activation(next_layer_in)
def back_propagate(self, y):
errors = y - self.layers[-1]
gradients = [(self.dactivation(self.layers[-1]) * errors).sum(axis=0)]
self.thresholds[-1] -= self.learning_rate * gradients[-1]
for i in range(len(self.weights) - 1, 0, -1):
tmp = np.sum(gradients[-1] @ self.weights[i].T * self.dactivation(self.layers[i]), axis=0)
gradients.append(tmp)
self.thresholds[i - 1] -= self.learning_rate * gradients[-1] / self.batch_size
gradients.reverse()
for i in range(len(self.weights)):
tmp = np.mean(self.layers[i], axis=0)
self.weights[i] += self.learning_rate * tmp.reshape((-1, 1)) * gradients[i]
测试代码
import sklearn.datasets
import numpy as np
def plot_decision_boundary(pred_func, X, y, title=None):
"""分类器画图函数,可画出样本点和决策边界
:param pred_func: predict函数
:param X: 训练集X
:param y: 训练集Y
:return: None
"""
# Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole gid
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
if title:
plt.title(title)
plt.show()
def test_mlp():
X, y = sklearn.datasets.make_moons(200, noise=0.20)
y = y.reshape((-1, 1))
n = MLPClassifier((2, 3, 1), activation='tanh', epochs=300, learning_rate=0.01)
n.fit(X, y)
def tmp(X):
sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0)
ans = sign(n.predict(X))
return ans
plot_decision_boundary(tmp, X, y, 'Neural Network')
效果
tanh relu更多机器学习代码,请访问 https://github.com/WiseDoge/plume
网友评论