import scanpy as sc
import matplotlib.pyplot as plt
adata = sc.read_h5ad('human_heart.h5ad')
adata.obs.head()
n_counts n_genes percent_mito percent_ribo sample gender celltype
AAACCCAAGCAAGGAA-1-H0026_apex 590.0 426 0.003390 0.005085 ctrl2 Male Endothelial
AAACCCAAGCGTGCCT-1-H0026_apex 1866.0 1052 0.001072 0.000536 ctrl2 Male Pericytes
AAACCCAAGGTAAGAG-1-H0026_apex 1991.0 1216 0.002511 0.001005 ctrl2 Male Pericytes
AAACCCACAAATTGCC-1-H0026_apex 664.0 521 0.013554 0.003012 ctrl2 Male Endothelial
AAACCCAGTCAAAGTA-1-H0026_apex 1664.0 900 0.004808 0.000000 ctrl2 Male Pericytes
split = adata.obs['sample'].unique().tolist()
n_split = len(split)
fig, ax = plt.subplots(nrows=1, ncols=n_split, squeeze=False, figsize=(7 * n_split, 5))
for i in range(n_split):
tmp = adata[adata.obs['sample'] == split[i], :]
sc.pl.umap(tmp, color='celltype', ax=ax[0, i], show=False)
ax[0, i].set_title(f"{split[i]}: celltype")
plt.subplots_adjust(wspace=0.6)
fig.show()
网友评论