美文网首页
数据结构—二叉树

数据结构—二叉树

作者: 土豆骑士 | 来源:发表于2020-05-17 08:55 被阅读0次

1:Some基本概念

一种非线性数据结构,一对多,有分支和层级结构,分为一般树,和常用的二叉树,类比树,公司组织架构,家谱。

树(Tree):是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
1)有且仅有一个特定的称为根(Root)的结点;
2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、......、Tn,其中每一个集合本身又是一棵树,并且称为根的子树。

此外,树的定义还需要强调以下两点:
 1)n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点。
 2)m>0时,子树的个数没有限制,但它们一定是互不相交的。

一棵树
度:结点拥有的子树数目称为结点的度。
层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
高度或深度: 树中结点的最大层次,
深度:对于任意节点n,n的深度为从根到n的唯一路径长,根的深度为0;从上往下。
高度:对于任意节点n,n的高度为从n到一片树叶的最长路径长,所有树叶的高度为0; 高度从下往上。

2:二叉树

二叉树(Binary Tree):是有n个结点的有限集合,该集合或者为空、或者由一个称为根(Root)的结点及两个不相交、被分别称为根结点的左子树右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树。一颗二叉树中每个结点只能含有0、1或2个孩子结点,而且孩子节点分左、右孩子。
一些特殊的二叉树:
1:满二叉树:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称为满二叉树:

满二叉树
完全二叉树:一棵深度为 k 有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为 i(i<=n) 的结点与满二叉树中编号为 i 的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树
特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点在树的左部。一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。
完全二叉树
不是完全二叉树,缺失编号index 6,7
非完全二叉树
斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。
斜树
二叉树特性:

1)在二叉树的第i层上最多有 2^i -1 个节点 。(i>=1)
2)二叉树中如果深度为k,那么最多有 2^k -1个节点。(k>=1)
3)n0=n2+1 n0表示度数为0的节点数,n2表示度数为2的节点数。
4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。
5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:
  A.如果i>1,那么序号为i的结点的双亲结点序号为i/2;
  B.如果i=1,那么序号为i的结点为根节点,无双亲结点;
  C.如果2i<=n,那么序号为i的结点的左孩子结点序号为2i;
  D.如果2i>n,那么序号为i的结点无左孩子;
  E.如果2i+1<=n,那么序号为i的结点右孩子序号为2i+1;
  F.如果2i+1>n,那么序号为i的结点无右孩子。

3:二叉树的顺序存储

二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。

顺序存储示例图
不太友好的顺序存储,浪费some space
节点position:
#define MAXSIZE 100 /* 存储空间初始分配量 */
#define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */

typedef int Status;        /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int CElemType;      /* 树结点的数据类型,目前暂定为整型 */
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点  */
CElemType Nil = 0;   /*设整型以0为空 或者以 INT_MAX(65535)*/

typedef struct {
    int level; //结点层
    int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
// 构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
    
    for (int i = 0; i < MAX_TREE_SIZE; i++) {
        //将二叉树初始化值置空
        T[i] = Nil;
    }
    
    return OK;
}
//按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
Status CreateBiTree(SqBiTree T) {
    /*
            1       -->1
       2        3   -->2
     4    5   6   7 -->3
    8 9 10          -->4
    1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
    */
    int i = 0;
    while (i < 10) {
        T[i] = i+1;
        printf("%d ",T[i]);
        //结点不为空,且无双亲结点
        if (i != 0 // 不是根结点需要判断双亲
            && T[i] != Nil // 结点不为空,如果双亲结点为空就有问题
            && T[(i + 1)/2 - 1] == Nil) { // 双亲结点为空
            printf("出现无双亲的非根结点%d\n",T[i]);
            T[i] = Nil;
            return ERROR;
            // 或者直接退出
//            exit(ERROR);
        }
        i++;
    }
    printf("\n");
    //将空赋值给T的后面的结点
    while (i < MAX_TREE_SIZE) {
        T[i] = Nil;
        i++;
    }
    return OK;
}
//清空树,和初始化树一样
#define ClearBiTree InitBiTree

//判断二叉树是否为空
Status BiTreeEmpty(SqBiTree T) {
    //根结点为空,则二叉树为空
    if (T[0] == Nil)
        return TRUE;
    return FALSE;
}

// 6.获取二叉树的深度
int BiTreeDepth(SqBiTree T){
    
    int j = -1;
    int i;
    
    //找到最后一个结点
    //MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
    for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
        if (T[i] != Nil)
            break;
    }
    
    do {
        j++;
    } while ( powl(2, j) <= i); //计算2的次幂
    
    return j;
}

/*返回处于位置e(层,本层序号)的结点值
 初始条件: 二叉树T存在,e是T中某个结点(的位置)
 操作结构: 返回处于位置e(层,本层序号)的结点值
 */
CElemType Value(SqBiTree T,Position e){
    
    int index = pow(2, e.level - 1) + (e.order - 1) -1;//T 的index 从0开始的
    
    return T[index];
}

/*获取二叉树跟结点的值
 初始条件: 二叉树T存在
 操作结果: 当T不空,用e返回T的根, 返回OK; 否则返回ERROR
 */
Status Root(SqBiTree T,CElemType *e){
    if (BiTreeEmpty(T)) {
        return ERROR;
    }
    
    *e = T[0];
    return OK;
}
//给处于位置e的结点赋值
 初始条件: 二叉树存在,e是T中某个结点的位置
 操作结果: 给处于位置e的结点赋值Value;
 */
Status Assign(SqBiTree T,Position e,CElemType value){
    
    //找到当前e在数组中的具体位置索引
    int i = (int)powl(2, e.level-1)+e.order -2;
    
    //叶子结点的双亲为空
    if (value != Nil &&  T[(i+1)/2-1] == Nil) {
        return ERROR;
    }
    
    //给双亲赋空值但是有叶子结点
    if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
        return  ERROR;
    }
    
    T[i] = value;
    return OK;
}
//获取e的双亲;
 初始条件: 二叉树存在,e是T中的某一个结点
 操作结果: 若e是T的非根结点, 则返回它的双亲,否则返回"空"
 */
CElemType Parent(SqBiTree T, CElemType e){
    
    //空树
    if (T[0] == Nil) {
        return Nil;
    }
    
    for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
        //找到e
        if (T[i] == e) {
            return T[(i+1)/2 - 1];
        }
    }
    
    //没有找到
    return Nil;  
}
/*获取某个结点的左孩子;
 初始条件:二叉树T存在,e是某个结点
 操作结果:返回e的左孩子,若e无左孩子,则返回"空"
 */
CElemType LeftChild(SqBiTree T,CElemType e){
    
    //空树
    if (T[0] == Nil) {
        return Nil;
    }
    for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
        //找到e
        if (T[i] == e) {
            return T[i*2+1];
        }
    }
    
    //没有找到
    return Nil; 
}
/*
  获取某个结点的右孩子;
 初始条件:二叉树T存在,e是某个结点
 操作结果:返回e的左孩子,若e无左孩子,则返回"空"
 */
CElemType RightChild(SqBiTree T,CElemType e){
    
    //空树
    if (T[0] == Nil) {
        return Nil;
    }
    for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
        //找到e
        if (T[i] == e) {
            return T[i*2+2];
        }
    }
    
    //没有找到
    return Nil;
    
}
/*
  获取结点的左兄弟
 初始条件:  二叉树T存在,e是T中某个结点
 操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
 */
CElemType LeftSibling(SqBiTree T,CElemType e)
{
    /* 空树 */
    if(T[0]==Nil)
        return Nil;
    
    for(int i=1;i<=MAX_TREE_SIZE-1;i++)
    /* 找到e且其序号为偶数(是右孩子) */
        if(T[i]==e&&i%2==0)
            return T[i-1];
    
    return Nil; /* 没找到e */
}

/*  获取结点的右兄弟
 初始条件: 二叉树T存在,e是T中某个结点
 操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
 */
CElemType RightSibling(SqBiTree T,CElemType e)
{
    /* 空树 */
    if(T[0]==Nil)
        return Nil;
    
    for(int i=1;i<=MAX_TREE_SIZE-1;i++)
    /* 找到e且其序号为奇数(是左孩子) */
        if(T[i]==e&&i%2==1)
            return T[i+1];
    
    return Nil; /* 没找到e */
}

Status visit(CElemType c){
    printf("%d ",c);
    return OK;
}

4:二叉树顺序存储的遍历

1、层序遍历

void LevelOrderTraverse(SqBiTree T) {
    
    int i = MAX_TREE_SIZE-1;
    
    //找到最后一个非空结点的序号
    while (T[i] == Nil) i--;
    
    //从根结点起,按层序遍历二叉树
    for (int j = 0; j <= i; j++)
        //只遍历非空结点
        if (T[j] != Nil)
            printf("%d ",T[j]);
    
    printf("\n");
}

2、前序遍历

void PreTraverse(SqBiTree T,int e){
    
    //打印结点数据
    visit(T[e]);
    
    //先序遍历左子树
    if (T[2 * e + 1] != Nil) {
        PreTraverse(T, 2*e+1);
    }
    //最后先序遍历右子树
    if (T[2 * e + 2] != Nil) {
        PreTraverse(T, 2*e+2);
    }
}
Status PreOrderTraverse(SqBiTree T){
    //树不为空
    if (!BiTreeEmpty(T)) {
        PreTraverse(T, 0);
    }
    printf("\n");
    return  OK;
}

3、中序遍历

void InTraverse(SqBiTree T, int e){
    
    /* 左子树不空 */
    if (T[2*e+1] != Nil)
        InTraverse(T, 2*e+1);
    
    visit(T[e]);
    
    /* 右子树不空 */
    if (T[2*e+2] != Nil)
        InTraverse(T, 2*e+2);
}

Status InOrderTraverse(SqBiTree T){
    
    /* 树不空 */
    if (!BiTreeEmpty(T)) {
        InTraverse(T, 0);
    }
    printf("\n");
    return OK;
}

4、后序遍历

void PostTraverse(SqBiTree T,int e)
{   /* 左子树不空 */
    if(T[2*e+1]!=Nil)
        PostTraverse(T,2*e+1);
    /* 右子树不空 */
    if(T[2*e+2]!=Nil)
        PostTraverse(T,2*e+2);
    
    visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
    if(!BiTreeEmpty(T)) /* 树不空 */
        PostTraverse(T,0);
    printf("\n");
    return OK;
}

测试:

int main(int argc, const char * argv[]) {
    // insert code here...
    printf("二叉树顺序存储结构实现!\n");
    
    Status iStatus;
    Position p;
    CElemType e;
    SqBiTree T;
    
    InitBiTree(T);
    CreateBiTree(T);
    printf("建立二叉树后,树空否?%d(1:是 0:否) \n",BiTreeEmpty(T));
    printf("树的深度=%d\n",BiTreeDepth(T));
    
    p.level=3;
    p.order=2;
    e=Value1(T,p);
    printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
    
    
    iStatus = Root(T, &e);
    if (iStatus) {
        printf("二叉树的根为:%d\n",e);
    }else
    {
        printf("树为空,无根!\n");
    }
    
    //向树中3层第2个结点位置上结点赋值99
    e = 99;
    Assign(T, p, e);
    
    //获取树中3层第2个结点位置结点的值是多少:
    e=Value1(T,p);
    printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
    
    //找到e这个结点的双亲;
    printf("结点%d的双亲为%d_",e,Parent(T, e));
    //找到e这个结点的左右孩子;
    printf("左右孩子分别为:%d,%d\n",LeftChild(T, e),RightChild(T, e));
    //找到e这个结点的左右兄弟;
    printf("结点%d的左右兄弟:%d,%d\n",e,LeftSibling(T, e),RightSibling(T, e));
    
    
    Assign(T, p, 5);
    
    printf("二叉树T层序遍历:");
    LevelOrderTraverse(T);
    
    printf("二叉树T先序遍历:");
    PreOrderTraverse(T);
    
    printf("二叉树T中序遍历:");
    InOrderTraverse(T);
    
    printf("二叉树T后序遍历:");
    PostOrderTraverse(T);
    
    return 0;
}
//
二叉树顺序存储结构实现!
1 2 3 4 5 6 7 8 9 10 建立二叉树后,树空否?0(1:是 0:否) 
树的深度=4
第3层第2个结点的值: 5
二叉树的根为:1
第3层第2个结点的值: 99
结点99的双亲为2_左右孩子分别为:10,0
结点99的左右兄弟:4,0
二叉树T层序遍历:1 2 3 4 5 6 7 8 9 10 
二叉树T先序遍历:1 2 4 8 9 5 10 3 6 7 
二叉树T中序遍历:8 4 9 2 10 5 1 6 3 7 
二叉树T后序遍历:8 9 4 10 5 2 6 7 3 1 

5:二叉树链式存储

二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针

节点
结点定义:
typedef char CElemType;
CElemType Nil=' '; /* 字符型以空格符为空 */
typedef struct BiTNode  /* 结点结构 */
{
    CElemType data;        /* 结点数据 */
    struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;

预设

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

/* 存储空间初始分配量 */
#define MAXSIZE 100
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;

int indexs = 1;
typedef char String[24]; /*  0号单元存放串的长度 */
String str;
Status StrAssign(String T,char *chars)
{
    int i;
    if(strlen(chars)>MAXSIZE)
        return ERROR;
    else
    {
        T[0]=strlen(chars);
        for(i=1;i<=T[0];i++)
            T[i]=*(chars+i-1);
        return OK;
    }
}

链式存储相关函数:

/* 打印数据*/
Status visit(CElemType e)
{
    printf("%c ",e);
    return OK;
}

/*  构造空二叉树T */
Status InitBiTree(BiTree *T)
{
    *T=NULL;
    return OK;
}
/* 7.3 销毁二叉树
 初始条件: 二叉树T存在。
 操作结果: 销毁二叉树T
 */
void DestroyBiTree(BiTree *T)
{
    if(*T)
    {
        /* 有左孩子 */
        if((*T)->lchild)
            DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
        
        /* 有右孩子 */
        if((*T)->rchild)
            DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
        
        free(*T); /* 释放根结点 */
        
        *T=NULL; /* 空指针赋0 */
    }
}
#define ClearBiTree DestroyBiTree

/*7.4 创建二叉树
 按前序输入二叉树中的结点值(字符),#表示空树;
 */
void CreateBiTree(BiTree *T){
    
    CElemType ch;
    
    ch = str[indexs++];//获取字符
    
    //判断当前字符是否为'#'
    if (ch == '#') {
        *T = NULL;
    } else {
        
        *T = (BiTree)malloc(sizeof(BiTNode));//创建新的结点
        //是否创建成功
        if (!*T) {
            exit(OVERFLOW);
        }
        
        /* 生成根结点 */
        (*T)->data = ch;
        /* 构造左子树 */
        CreateBiTree(&(*T)->lchild);
        /* 构造右子树 */
        CreateBiTree(&(*T)->rchild);
    }
}
/*
 二叉树T是否为空;
 初始条件: 二叉树T存在
 操作结果: 若T为空二叉树,则返回TRUE,否则FALSE
 */
Status BiTreeEmpty(BiTree T)
{
    if(T)
        return FALSE;
    else
        return TRUE;
}

/*
 7.6 二叉树T的深度
 初始条件: 二叉树T存在
 操作结果: 返回T的深度
 */
int BiTreeDepth(BiTree T){
    
    int i,j;
    if(!T)
        return 0;
    
    //计算左孩子的深度
    if(T->lchild)
        i=BiTreeDepth(T->lchild);
    else
        i=0;
    
    //计算右孩子的深度
    if(T->rchild)
        j=BiTreeDepth(T->rchild);
    else
        j=0;
    
    //比较i和j
    return i>j?i+1:j+1;
}
/*
  二叉树T的根
 初始条件: 二叉树T存在
 操作结果: 返回T的根
 */
CElemType Root(BiTree T){
    if (BiTreeEmpty(T))
        return Nil;
    
    return T->data;
}

/*
  返回p所指向的结点值;
 初始条件: 二叉树T存在,p指向T中某个结点
 操作结果: 返回p所指结点的值
 */
CElemType Value(BiTree p){
    return p->data;
}

/*
  给p所指结点赋值为value;
 初始条件: 二叉树T存在,p指向T中某个结点
 操作结果: 给p所指结点赋值为value
 */
void Assign(BiTree p,CElemType value)
{
    p->data=value;
}
二叉树链式存储遍历

1、前序遍历

void PreOrderTraverse(BiTree T) {
    if(T==NULL)
        return;
    printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
    PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
    PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}

2、中序遍历

void InOrderTraverse(BiTree T) {
    if(T==NULL)
        return ;
    InOrderTraverse(T->lchild); /* 中序遍历左子树 */
    printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
    InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}

3、后序遍历

void PostOrderTraverse(BiTree T) {
    if(T==NULL)
        return;
    PostOrderTraverse(T->lchild); /* 先后序遍历左子树  */
    PostOrderTraverse(T->rchild); /* 再后序遍历右子树  */
    printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}

相关文章

  • 数据结构 - 概要

    数组 链表 堆/栈/队列 树 数据结构 - 二叉树数据结构 - 二叉查找树数据结构 - 平衡二叉树数据结构 - A...

  • 关于函数递归和迭代的转化, 及尾递归相关知识的接触和思考

    javascript实现数据结构: 树和二叉树,二叉树的遍历和基本操作 js 二叉树 【数据结构与算法】深入浅出递...

  • 二叉树非递归遍历

    二叉树的非递归遍历 二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有...

  • 二叉树的遍历

    数据结构算法 二叉树的遍历

  • python实现二叉树的遍历

    二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有深度遍历和广度遍历,...

  • IOS基础知识-算法与数据结构篇

    数据结构 通常可以分为四类: 数据结构的存储方式: 链表可分为: 什么是树 什么是二叉树 二叉树遍历 在二叉树的一...

  • 数据结构

    数据结构 数据结构概念 顺序表 链表 队列 栈 二叉树 常用排序算法

  • 2018-05-11 二叉树的三种遍历方法

    二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有前序、中序以及后序三...

  • 数据结构之二叉树(一)——绪论

    前言 二叉树是数据结构中一种重要的数据结构,也是树表家族最为基础的结构,包括完全二叉树、满二叉树、二叉查找树、AV...

  • MySQL索引

    索引是帮助MySQL高效获取数据的排好序的数据结构 索引数据结构: 二叉树 红黑树 哈希 B-Tree 二叉树容易...

网友评论

      本文标题:数据结构—二叉树

      本文链接:https://www.haomeiwen.com/subject/dvnwghtx.html