1:Some基本概念
一种非线性数据结构,一对多,有分支和层级结构,分为一般树,和常用的二叉树,类比树,公司组织架构,家谱。
树(Tree):是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
1)有且仅有一个特定的称为根(Root)的结点;
2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、......、Tn,其中每一个集合本身又是一棵树,并且称为根的子树。
此外,树的定义还需要强调以下两点:
1)n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点。
2)m>0时,子树的个数没有限制,但它们一定是互不相交的。
度:结点拥有的子树数目称为结点的度。
层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
高度或深度: 树中结点的最大层次,
深度:对于任意节点n,n的深度为从根到n的唯一路径长,根的深度为0;从上往下。
高度:对于任意节点n,n的高度为从n到一片树叶的最长路径长,所有树叶的高度为0; 高度从下往上。
2:二叉树
二叉树(Binary Tree):是有n个结点的有限集合,该集合或者为空、或者由一个称为根(Root)的结点及两个不相交、被分别称为根结点的左子树和右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树。一颗二叉树中每个结点只能含有0、1或2个孩子结点,而且孩子节点分左、右孩子。
一些特殊的二叉树:
1:满二叉树:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称为满二叉树:
完全二叉树:一棵深度为 k 有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为 i(i<=n) 的结点与满二叉树中编号为 i 的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。
特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点在树的左部。一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。
完全二叉树
不是完全二叉树,缺失编号index 6,7
非完全二叉树
斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。
斜树
二叉树特性:
1)在二叉树的第i层上最多有 2^i -1 个节点 。(i>=1)
2)二叉树中如果深度为k,那么最多有 2^k -1个节点。(k>=1)
3)n0=n2+1 n0表示度数为0的节点数,n2表示度数为2的节点数。
4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。
5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:
A.如果i>1,那么序号为i的结点的双亲结点序号为i/2;
B.如果i=1,那么序号为i的结点为根节点,无双亲结点;
C.如果2i<=n,那么序号为i的结点的左孩子结点序号为2i;
D.如果2i>n,那么序号为i的结点无左孩子;
E.如果2i+1<=n,那么序号为i的结点右孩子序号为2i+1;
F.如果2i+1>n,那么序号为i的结点无右孩子。
3:二叉树的顺序存储
二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。
顺序存储示例图不太友好的顺序存储,浪费some space
节点position:
#define MAXSIZE 100 /* 存储空间初始分配量 */
#define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int CElemType; /* 树结点的数据类型,目前暂定为整型 */
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点 */
CElemType Nil = 0; /*设整型以0为空 或者以 INT_MAX(65535)*/
typedef struct {
int level; //结点层
int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
// 构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
for (int i = 0; i < MAX_TREE_SIZE; i++) {
//将二叉树初始化值置空
T[i] = Nil;
}
return OK;
}
//按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
Status CreateBiTree(SqBiTree T) {
/*
1 -->1
2 3 -->2
4 5 6 7 -->3
8 9 10 -->4
1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
*/
int i = 0;
while (i < 10) {
T[i] = i+1;
printf("%d ",T[i]);
//结点不为空,且无双亲结点
if (i != 0 // 不是根结点需要判断双亲
&& T[i] != Nil // 结点不为空,如果双亲结点为空就有问题
&& T[(i + 1)/2 - 1] == Nil) { // 双亲结点为空
printf("出现无双亲的非根结点%d\n",T[i]);
T[i] = Nil;
return ERROR;
// 或者直接退出
// exit(ERROR);
}
i++;
}
printf("\n");
//将空赋值给T的后面的结点
while (i < MAX_TREE_SIZE) {
T[i] = Nil;
i++;
}
return OK;
}
//清空树,和初始化树一样
#define ClearBiTree InitBiTree
//判断二叉树是否为空
Status BiTreeEmpty(SqBiTree T) {
//根结点为空,则二叉树为空
if (T[0] == Nil)
return TRUE;
return FALSE;
}
// 6.获取二叉树的深度
int BiTreeDepth(SqBiTree T){
int j = -1;
int i;
//找到最后一个结点
//MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
if (T[i] != Nil)
break;
}
do {
j++;
} while ( powl(2, j) <= i); //计算2的次幂
return j;
}
/*返回处于位置e(层,本层序号)的结点值
初始条件: 二叉树T存在,e是T中某个结点(的位置)
操作结构: 返回处于位置e(层,本层序号)的结点值
*/
CElemType Value(SqBiTree T,Position e){
int index = pow(2, e.level - 1) + (e.order - 1) -1;//T 的index 从0开始的
return T[index];
}
/*获取二叉树跟结点的值
初始条件: 二叉树T存在
操作结果: 当T不空,用e返回T的根, 返回OK; 否则返回ERROR
*/
Status Root(SqBiTree T,CElemType *e){
if (BiTreeEmpty(T)) {
return ERROR;
}
*e = T[0];
return OK;
}
//给处于位置e的结点赋值
初始条件: 二叉树存在,e是T中某个结点的位置
操作结果: 给处于位置e的结点赋值Value;
*/
Status Assign(SqBiTree T,Position e,CElemType value){
//找到当前e在数组中的具体位置索引
int i = (int)powl(2, e.level-1)+e.order -2;
//叶子结点的双亲为空
if (value != Nil && T[(i+1)/2-1] == Nil) {
return ERROR;
}
//给双亲赋空值但是有叶子结点
if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
return ERROR;
}
T[i] = value;
return OK;
}
//获取e的双亲;
初始条件: 二叉树存在,e是T中的某一个结点
操作结果: 若e是T的非根结点, 则返回它的双亲,否则返回"空"
*/
CElemType Parent(SqBiTree T, CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
//找到e
if (T[i] == e) {
return T[(i+1)/2 - 1];
}
}
//没有找到
return Nil;
}
/*获取某个结点的左孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
*/
CElemType LeftChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+1];
}
}
//没有找到
return Nil;
}
/*
获取某个结点的右孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
*/
CElemType RightChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+2];
}
}
//没有找到
return Nil;
}
/*
获取结点的左兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
*/
CElemType LeftSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为偶数(是右孩子) */
if(T[i]==e&&i%2==0)
return T[i-1];
return Nil; /* 没找到e */
}
/* 获取结点的右兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
*/
CElemType RightSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为奇数(是左孩子) */
if(T[i]==e&&i%2==1)
return T[i+1];
return Nil; /* 没找到e */
}
Status visit(CElemType c){
printf("%d ",c);
return OK;
}
4:二叉树顺序存储的遍历
1、层序遍历
void LevelOrderTraverse(SqBiTree T) {
int i = MAX_TREE_SIZE-1;
//找到最后一个非空结点的序号
while (T[i] == Nil) i--;
//从根结点起,按层序遍历二叉树
for (int j = 0; j <= i; j++)
//只遍历非空结点
if (T[j] != Nil)
printf("%d ",T[j]);
printf("\n");
}
2、前序遍历
void PreTraverse(SqBiTree T,int e){
//打印结点数据
visit(T[e]);
//先序遍历左子树
if (T[2 * e + 1] != Nil) {
PreTraverse(T, 2*e+1);
}
//最后先序遍历右子树
if (T[2 * e + 2] != Nil) {
PreTraverse(T, 2*e+2);
}
}
Status PreOrderTraverse(SqBiTree T){
//树不为空
if (!BiTreeEmpty(T)) {
PreTraverse(T, 0);
}
printf("\n");
return OK;
}
3、中序遍历
void InTraverse(SqBiTree T, int e){
/* 左子树不空 */
if (T[2*e+1] != Nil)
InTraverse(T, 2*e+1);
visit(T[e]);
/* 右子树不空 */
if (T[2*e+2] != Nil)
InTraverse(T, 2*e+2);
}
Status InOrderTraverse(SqBiTree T){
/* 树不空 */
if (!BiTreeEmpty(T)) {
InTraverse(T, 0);
}
printf("\n");
return OK;
}
4、后序遍历
void PostTraverse(SqBiTree T,int e)
{ /* 左子树不空 */
if(T[2*e+1]!=Nil)
PostTraverse(T,2*e+1);
/* 右子树不空 */
if(T[2*e+2]!=Nil)
PostTraverse(T,2*e+2);
visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
if(!BiTreeEmpty(T)) /* 树不空 */
PostTraverse(T,0);
printf("\n");
return OK;
}
测试:
int main(int argc, const char * argv[]) {
// insert code here...
printf("二叉树顺序存储结构实现!\n");
Status iStatus;
Position p;
CElemType e;
SqBiTree T;
InitBiTree(T);
CreateBiTree(T);
printf("建立二叉树后,树空否?%d(1:是 0:否) \n",BiTreeEmpty(T));
printf("树的深度=%d\n",BiTreeDepth(T));
p.level=3;
p.order=2;
e=Value1(T,p);
printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
iStatus = Root(T, &e);
if (iStatus) {
printf("二叉树的根为:%d\n",e);
}else
{
printf("树为空,无根!\n");
}
//向树中3层第2个结点位置上结点赋值99
e = 99;
Assign(T, p, e);
//获取树中3层第2个结点位置结点的值是多少:
e=Value1(T,p);
printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
//找到e这个结点的双亲;
printf("结点%d的双亲为%d_",e,Parent(T, e));
//找到e这个结点的左右孩子;
printf("左右孩子分别为:%d,%d\n",LeftChild(T, e),RightChild(T, e));
//找到e这个结点的左右兄弟;
printf("结点%d的左右兄弟:%d,%d\n",e,LeftSibling(T, e),RightSibling(T, e));
Assign(T, p, 5);
printf("二叉树T层序遍历:");
LevelOrderTraverse(T);
printf("二叉树T先序遍历:");
PreOrderTraverse(T);
printf("二叉树T中序遍历:");
InOrderTraverse(T);
printf("二叉树T后序遍历:");
PostOrderTraverse(T);
return 0;
}
//
二叉树顺序存储结构实现!
1 2 3 4 5 6 7 8 9 10 建立二叉树后,树空否?0(1:是 0:否)
树的深度=4
第3层第2个结点的值: 5
二叉树的根为:1
第3层第2个结点的值: 99
结点99的双亲为2_左右孩子分别为:10,0
结点99的左右兄弟:4,0
二叉树T层序遍历:1 2 3 4 5 6 7 8 9 10
二叉树T先序遍历:1 2 4 8 9 5 10 3 6 7
二叉树T中序遍历:8 4 9 2 10 5 1 6 3 7
二叉树T后序遍历:8 9 4 10 5 2 6 7 3 1
5:二叉树链式存储
二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针
节点结点定义:
typedef char CElemType;
CElemType Nil=' '; /* 字符型以空格符为空 */
typedef struct BiTNode /* 结点结构 */
{
CElemType data; /* 结点数据 */
struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;
预设
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
/* 存储空间初始分配量 */
#define MAXSIZE 100
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;
int indexs = 1;
typedef char String[24]; /* 0号单元存放串的长度 */
String str;
Status StrAssign(String T,char *chars)
{
int i;
if(strlen(chars)>MAXSIZE)
return ERROR;
else
{
T[0]=strlen(chars);
for(i=1;i<=T[0];i++)
T[i]=*(chars+i-1);
return OK;
}
}
链式存储相关函数:
/* 打印数据*/
Status visit(CElemType e)
{
printf("%c ",e);
return OK;
}
/* 构造空二叉树T */
Status InitBiTree(BiTree *T)
{
*T=NULL;
return OK;
}
/* 7.3 销毁二叉树
初始条件: 二叉树T存在。
操作结果: 销毁二叉树T
*/
void DestroyBiTree(BiTree *T)
{
if(*T)
{
/* 有左孩子 */
if((*T)->lchild)
DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
/* 有右孩子 */
if((*T)->rchild)
DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
free(*T); /* 释放根结点 */
*T=NULL; /* 空指针赋0 */
}
}
#define ClearBiTree DestroyBiTree
/*7.4 创建二叉树
按前序输入二叉树中的结点值(字符),#表示空树;
*/
void CreateBiTree(BiTree *T){
CElemType ch;
ch = str[indexs++];//获取字符
//判断当前字符是否为'#'
if (ch == '#') {
*T = NULL;
} else {
*T = (BiTree)malloc(sizeof(BiTNode));//创建新的结点
//是否创建成功
if (!*T) {
exit(OVERFLOW);
}
/* 生成根结点 */
(*T)->data = ch;
/* 构造左子树 */
CreateBiTree(&(*T)->lchild);
/* 构造右子树 */
CreateBiTree(&(*T)->rchild);
}
}
/*
二叉树T是否为空;
初始条件: 二叉树T存在
操作结果: 若T为空二叉树,则返回TRUE,否则FALSE
*/
Status BiTreeEmpty(BiTree T)
{
if(T)
return FALSE;
else
return TRUE;
}
/*
7.6 二叉树T的深度
初始条件: 二叉树T存在
操作结果: 返回T的深度
*/
int BiTreeDepth(BiTree T){
int i,j;
if(!T)
return 0;
//计算左孩子的深度
if(T->lchild)
i=BiTreeDepth(T->lchild);
else
i=0;
//计算右孩子的深度
if(T->rchild)
j=BiTreeDepth(T->rchild);
else
j=0;
//比较i和j
return i>j?i+1:j+1;
}
/*
二叉树T的根
初始条件: 二叉树T存在
操作结果: 返回T的根
*/
CElemType Root(BiTree T){
if (BiTreeEmpty(T))
return Nil;
return T->data;
}
/*
返回p所指向的结点值;
初始条件: 二叉树T存在,p指向T中某个结点
操作结果: 返回p所指结点的值
*/
CElemType Value(BiTree p){
return p->data;
}
/*
给p所指结点赋值为value;
初始条件: 二叉树T存在,p指向T中某个结点
操作结果: 给p所指结点赋值为value
*/
void Assign(BiTree p,CElemType value)
{
p->data=value;
}
二叉树链式存储遍历
1、前序遍历
void PreOrderTraverse(BiTree T) {
if(T==NULL)
return;
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}
2、中序遍历
void InOrderTraverse(BiTree T) {
if(T==NULL)
return ;
InOrderTraverse(T->lchild); /* 中序遍历左子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}
3、后序遍历
void PostOrderTraverse(BiTree T) {
if(T==NULL)
return;
PostOrderTraverse(T->lchild); /* 先后序遍历左子树 */
PostOrderTraverse(T->rchild); /* 再后序遍历右子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}
网友评论