美文网首页
2017年全球大数据产业报告之海外篇(第二集)

2017年全球大数据产业报告之海外篇(第二集)

作者: 升维资本 | 来源:发表于2017-07-06 10:54 被阅读0次

    原创2017-07-06星河研究院吴极   星河融快

    上周四,我们与星河研究院在《2017年全球大数据产业报告之海外篇(第一集)》中为大家介绍了海外大数据生态的整体框架,相信大家对大数据的底层结构,以及应用层功能的覆盖已经有了一定的宏观了解。我们从本期开始将会带大家从微观的视角,分领域来仔细研究海外大数据行业的各类应用。

    今天我们将聚焦于大数据的分析、可视化及BI领域。

    虽然这三个领域在功能及应用范围上各有千秋,但实质上可以说是相辅相成:通过大数据的基础分析工具,研究人员可以获得数据内部的逻辑及结果表现,但通常这些结果过于复杂并缺乏合理的表达形式,使数据科学家及企业的管理者无法快速领会并对经营活动进行调整。

    因此大数据的可视化方案应运而生,多数可视化方案都作为数据分析工具的延伸而存在,但也有少部分公司另辟蹊径,采用非传统方式将数据的可视化更加贴近需求。BI则是大数据分析和可视化与业务场景的结合,作为企业内部管理工具,使企业的价值有了极大的增长,成为了大数据应用领域重要的一环。

    以上三个领域在国内也有许多优秀的企业,我们欢迎该领域的企业家和投资人与我们一同探讨,共同进步。

    星河融快(ID:rongkuai888)将通过专业的分析,持续与你分享“有趣的”产业互联网干货。欢迎你在下方留言和我们分享有趣的观点,自荐或推荐优质产业互联网项目,同时也欢迎你来上地18号和我们聊聊。

    以下,供你参考。

    星河研究院

    专注产业互联网的智库平台

    第一

    大数据分析领域,在朝向易用、简单化发展

    大部分大数据分析企业的现状,可以说是将数据的分析、可视化及数据的采集、治理、集成进行了一体化,以大数据的分析平台形式存在。例如Fractal Analytics除了具备数据分析功能外,还提供自动化数据清理及验证服务,能够返回标准化的结构化数据; Voyager Labs则能够实时采集、分析遍布世界各地的数十亿个数据点,帮助用户进行预测。

    上述典型公司主要面向大型企业进行定制化全流程服务,客单价有时高达千万美元级别,例如Fractal Analytics的客户就包括飞利浦、金佰利等大型公司,其高昂的价格及服务令小型企业望尘莫及。

    但随着大数据技术的逐渐普及,SaaS化的大数据分析服务将是一个明确的发展方向,而其使用门槛也将大幅降低,从而将大数据分析的能力逐步赋予给中小企业,以真正的实现其基础资源的价值。同时确保企业数据安全的数据脱敏、数据保护市场也会随着SaaS化的到来而逐步拓展出新的市场空间。

    目前大数据技术简化、低成本、易用的趋势已经在部分公司的产品策略上有所体现,例如大数据分析公司Domino的产品让数据科学家只需专注于自己的分析工作,而不用关注软硬件基础设施的建立及维护,Datameer更进一步开发出的产品屏蔽了复杂的大数据分析底层技术,通过类似电子表格的可视化数据分析用户界面,让企业的员工能够快速上手使用,RapidMiner Studio可零代码操作客户端,实现机器学习、数据挖掘、文本挖掘、预测性分析等功能。

    在大数据分析能力普及的同时,提升数据分析性能、优化数据分析结果的技术研发也在快速进展中。例如SigOpt通过自主开发的贝叶斯优化(Bayesian Optimization)算法来调整模型的参数,获得了比常见的网格搜索(grid searching technique)解决方案更快、更稳定、更易于使用的结果,目前SigOpt 的产品不仅可以让用户测试不同变量,还能够提供下一步的测试建议,以帮助用户持续优化改善数据分析结果。

    令人感到欣喜的是,在大数据分析领域还存在着一些颠覆了传统数据分析理论,采用独特方式方法进行数据分析的公司。这类公司的技术对传统数据分析方法进行了很好的补充,在特定领域有着成功的应用。

    这类公司中的典型之一是由三位全球顶尖的数学家创立的Ayasdi,它利用拓扑数据分析技术和上百种机器学习的算法来处理复杂的数据集,不仅可以有效地捕捉高维数据空间的拓扑信息,而且擅长发现一些用传统方法无法发现的小分类,这种方法目前在基因与癌症研究领域大显身手,例如一位医生利用Ayasdi的数据分析技术发现了乳腺癌的14个变种,如今Ayasdi已经在金融服务和医疗保健行业中获得了相当数量的客户。

    如果希望了解全部的海外大数据分析公司详细信息,请关注公众号,回复“大数据”进行下载

    第二

    视化技术,逐步实现了自动化、智能化

    星河研究院在上周的文章中提到,大数据可视化是连接数据分析结果与人脑的最好途径,因此可视化技术的高低也成为了左右大数据企业获客能力的重要因素。目前可视化的发展方向同大数据分析一致,都是朝着简单、自动化、智能的方向在努力。

    典型企业如Alteryx是一个提供一站式数据分析平台的初创公司,旨在让用户在同一个平台上完成数据输入、建模以及数据图形化等操作,将数据运算与精美的图像完美地嫁接在一起,并能够和SAS和R语言一样进行数据的统计和分析。

    通过可视化帮助用户实现真正的管理能力提升也是重要的功能之一,德国大数据公司Celonis通过流程挖掘技术,从日常记录中提取数据、发现关键因素,并最终揭示公司在业务中的执行情况,能够帮助客户公司提高30%的工作效率。

    发展到如今,可视化技术已经不局限于传统的分析结果展示,而是能够直接转换文本、图片等非结构化的数据并直观展现,例如Quid利用机器智能读取大量文本,然后将该数据转换为交互式视觉地图,以节约过去通常会耗费在阅读检索中的大量时间。Origami帮助营销人员将CRM、社交媒体、邮件营销和调查报告等跨平台的数据整合并进行有效分析,使其简单化、直观化、视觉化,人人都能够高效实用。

    同时数据分析及可视化对硬件应用的革新也在进行中,本周二我们与星河研究院发布的文章《向IPO进发!日志管理分析平台Sumo Logic获7500万美元F轮融资》提到开发GPU关系数据库服务的Kinetica获得了5000万美元A轮融资,采用同一技术路线的MapD也已经能够做到比传统计算内核快100倍的速度对大数据进行查询与可视化。

    如果希望了解全部的海外大数据分析公司详细信息,请关注公众号,回复“大数据”进行下载

    第三

    BI技术摆脱“鸡肋”,实时、便捷普惠政企效率提升

    BI技术的发展已经有了较长的历史,但由于技术因素此前一直被限制于企业内部采集与应用,实际发挥的效果有限并且使用率不高。如今在数据采集与应用范围普及与大数据分析、可视化技术的推动下,通过数据仪表板、智能决策等方式提升企业运营效率利器的BI再次获得了资本市场的青睐,Tableau作为BI的代表性企业已经顺利IPO目前市值超过48亿美元,另一家代表性企业DOMO估值也达到20亿美元,成长速度远超传统商业软件公司。

    相比于可视化技术,BI更偏重于实际的应用,通过模板化、SaaS化及去代码等方式,BI应用范围不再局限于数据科学家及企业高管,可预见未来企业内部每个员工都可以通过BI工具获知自己及所处部门的各项数据,并能够有针对性的改进工作方式与方向。

    已经累计融资1.77亿美元的Looker令用户能够使用自然语言进行查询,降低了查询大型数据集的门槛;GoodData为企业提供大数据分析SaaS服务,其所有的数据分析服务实现了100%云化,企业可以将公司已有数据导入GoodData的云平台,再对数据做跟踪、切分、可视化、分析等处理。

    BI领域一个有意思的应用案例是Qlik公司的产品受到了中国海关总署的高度赞扬。海关总署每天都需要进行庞大的数据分析, Qlik则通过图形化数据展示,使海关管理人员不再受平台和时间的限制,能够多视角长跨度的分析,实现了对于现有海量数据的业务的快速展示,极大地促进了稽查效果。

    欢迎关注星河融快(rongkuai888)公众号,回复“大数据”,下载我们为你精心梳理的大数据分析、可视化及BI领域的27家企业介绍。

    下期预告:

    我们将给大家带来大数据检索、咨询预测、支撑平台及机器学习相关企业的介绍。

    我是吴极,我们下周四见。

    相关文章

      网友评论

          本文标题:2017年全球大数据产业报告之海外篇(第二集)

          本文链接:https://www.haomeiwen.com/subject/dxhhhxtx.html