# -*- coding: utf-8 -*-
"""
Created on Mon Mar 20 22:56:32 2017
@author: Z.Y
"""
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def xavier_init(fan_in, fan_out, constant = 1):
low = -constant * np.sqrt(6.0 /(fan_in + fan_out))
high = constant * np.sqrt(6.0/(fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out), minval = low, maxval= high , dtype = tf.float32)
class AdditiveGassionNoiseAntoencoder(object):
def __init__(self,
n_input,
n_hidden,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(), #优化器,默认为 AdamOptimizer
scale = 0.1
):
self.n_input = n_input #输入变量数
self.n_hidden = n_hidden # 隐含节点数
self.tranfer = transfer_function # 隐含层激活函数 ,默认为softplus
self.scale = tf.placeholder(tf.float32)
self.traning_scale = scale # 高斯噪声系数
network_weights = self._initialiaze_weight() # 参数初始化 定义初始化函数
self.weights = network_weights
self.x = tf.placeholder(tf.float32,[None,self.n_input])
self.hidden = self.tranfer(
tf.add(tf.matmul(
self.x + scale*tf.random_normal((n_input,)),self.weights['w1']),
self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden,self.weights['w2']),self.weights['b2'])
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(
self.reconstruction,self.x),2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
def _initialiaze_weight(self):
all_weight = dict()
all_weight['w1'] = tf.Variable(xavier_init(self.n_input,self.n_hidden))
all_weight['b1'] = tf.Variable(tf.zeros([self.n_hidden],dtype=tf.float32))
all_weight['w2'] = tf.Variable(tf.zeros([self.n_hidden,self.n_input],dtype=tf.float32))
all_weight['b2'] = tf.Variable(tf.zeros(self.n_input,dtype=tf.float32))
return all_weight
def partial_fit(self,X):
cost, opt = self.sess.run((self.cost, self.optimizer),feed_dict = {self.x : X, self.scale : self.traning_scale})
return cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict = {self.x :X ,self.scale : self.traning_scale})
def transfrom(self, X):
return self.sess.run(self.hidden, feed_dict = {self.x :X , self.scale : self.traning_scale})
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size = self.weights['b1'])
return self.sess.run(self.reconstruction, feed_dict = {self.hidden:hidden})
def reconstruction(self, X):
return self.sess.run(self.reconstruction, feed_dict = {self.x:X,self.scale:self.training_scale})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
def standard_scale(X_train, X_test):
precprocessor = prep.StandardScaler().fit(X_train)
X_train = precprocessor.transform(X_train)
X_test = precprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images,mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epcohs = 40
batch_size = 128
display = 1
antoencoder = AdditiveGassionNoiseAntoencoder(n_input=784,
n_hidden = 400,
transfer_function = tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
scale=0.01)
for epoch in range(training_epcohs):
avg_cost = 0
total_batch = int(n_samples / batch_size)
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
cost = antoencoder.partial_fit(batch_xs)
avg_cost +=cost/n_samples*batch_size
if epoch % display ==0:
print((epoch+1),(avg_cost))
print(antoencoder.calc_total_cost(X_test))
```
网友评论