机器学习主要有三种类型,它们各有优缺点,分别是:监督学习,无监督学习和强化学习。
监督学习
监督学习涉及到标注数据,计算机可以使用所提供的数据来识别新的样本。
监督学习的两种主要类型是分类和回归。
第一种分类,在分类中训练的机器将把一组数据分成特定的类。比如邮箱的垃圾邮件过滤器,过滤器分析之前标记为垃圾邮件的邮件,并将其与新邮件进行比较。如果达到某个百分比,则这些新邮件会被标记为垃圾邮件,并发送到相应的文件夹;不像垃圾邮件的将被归类为正常并发送到收件箱。
第二种是回归。在回归中,机器使用先前标注的数据来预测未来。比如天气应用。利用天气的相关历史数据(即平均温度,湿度和降水量),手机的天气应用可以查看当前天气,并对一定时间范围内的天气进行预测。
无监督学习
在无监督学习中,数据是未标注的。由于现实中,大多数的数据都是未标注的,因此这些算法特别有用。
无监督学习分为聚类和降维。
聚类用于根据属性和行为对象进行分组。这与分类不同,因为这些组不会提供给你。聚类将一个组划分为不同的子组(例如,根据年龄和婚姻状况),然后进行有针对性的营销。另一方面,降维涉及通过查找共性来减少数据集的变量。大多数数据可视化使用降维来识别趋势和规则。
强化学习
强化学习使用机器的历史和经验来做出决策。强化学习的经典应用是游戏。与监督和无监督学习相反,强化学习不注重提供“正确”的答案或输出。相反,它专注于性能,这类似人类根据积极和消极后果进行学习。如果孩子碰到了热炉,他很快就会学会不再重复这个动作。同样在国际象棋中,计算机可以学习不将王移动到对手的棋子可以到达的地方。根据这个原理,在游戏中机器能够最终击败顶级的人类玩家。
你可能会问,我们说的是人工智能吗?有点,毕竟机器学习是人工智能的一个分支。人工智能注重开发能像人类一样完成复杂任务的机器,甚至完成得比人类更好。这些任务通常涉及判断、策略和认知推理,这些技能最初被认为是机器的“禁区”。虽然听起来很简单,但这些技能的范围非常广泛,涉及到语言处理、图像识别和规划等等。机器学习使用特定的算法和编程方法来实现人工智能。如果没有机器学习,之前提到的国际象棋程序将需要数百万行代码,以及对手所有的落子可能性。通过机器学习,则只需要少量代码。
还有深度学习和神经网络,稍后我们将更详细地介绍它们。但是现在请注意,深度学习是机器学习的一个子集,专注于模仿人类大脑的生物学和运行过程。
机器学习的发展历程
机器学习的最早由贝叶斯在1783年发表的同名定理中提出。贝叶斯定理根据类似事件的历史数据得出事件的可能性。换句话说,贝叶斯定理是一种从经验中学习的数学方法,这也是机器学习的基本思想。
几个世纪后的1950年,计算机科学家艾伦·图灵发明了图灵测试,计算机通过文本对话,从而让人类认为与其交谈的是人而不是计算机。图灵认为,只有当机器通过这项测试才能被认为是“智能的”。
在此之后不久,1952年,亚瑟·塞缪尔开发了第一个真正的机器学习程序,在简单的跳棋游戏中,计算机能够根据之前的游戏学习策略,并提高之后的表现。接下来是1963年,唐纳德·米基开发了基于强化学习的tic-tac-toe项目。
在接下来的几十年中,机器学习按照相同模式发展着,即技术突破带来更新、更复杂的计算机,通常通过与专业人类玩家进行战略游戏来测试。在1997年,IBM的国际象棋电脑Deep Blue在国际象棋比赛中击败世界冠军Garry Kasparov。最近,谷歌开发的AlphaGo专注于被认为是世界上最难的游戏——围棋。尽管围棋被认为过于复杂,难以被计算机攻克,但AlphaGo最终在2016年击败了李世石。
机器学习的最大突破是2006年深度学习的发展。深度学习是机器学习的一个类别,旨在模仿人类大脑的思维过程,通常用于图像和语音识别。
如今我们使用的许多技术都不离开深度学习。你是否曾将照片上传到Facebook帐户,并标记图中的人物?Facebook正在使用神经网络识别照片中的人脸。还有Siri,当你向iPhone询问今天棒球比赛的比分时,你的语音将通过复杂的语音解析算法进行分析。没有深度学习,这一切都将难以实现。
机器学习的原理
初学者们要注意了,如果想完全理解大多数机器学习算法,那么必须对一些关键数学概念有基本了解。但不要害怕,这些概念很简单,有些可能你已经掌握了。机器学习涉及到线性代数、微积分、概率和统计。
线性代数概念Top 3:
-
矩阵运算
-
特征值/特征向量
-
向量空间和范数
微积分概念Top 3:
-
偏导数
-
向量值函数
-
方向梯度
统计概念Top 3:
-
贝叶斯定理
-
组合学
-
抽样方法
一旦掌握了基本的数学概念,就可以入门机器学习了,有5个主要步骤。
u=3020201674,1922128582&fm=173&app=25&f=JPEG.jpeg
网友评论