首先分5中情况:
1,spark master进程挂掉了
2,spark master在执行中挂掉了
3,spark worker提交任务前全部挂掉了
4,spark worker在执行application过程中挂掉了
5,spark worker在执行application过程中全部挂掉了
1,spark master进程挂掉了
提交不了application,所以不用考虑application恢复问题
2,spark master在执行中挂掉了
不影响application正常执行,因为执行过程在worker中完成,并直接由worker返回结果。
3,spark worker提交任务前全部挂掉了
报错信息如下,启动woker后,application恢复正常。
17/01/04 19:31:13 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
4,spark worker在执行application过程中挂掉了
报错信息如下:
17/01/04 19:41:50 ERROR TaskSchedulerImpl: Lost executor 0 on 192.168.91.128: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
移除RPC client,检查DAG是否丢失关键路径,如果丢失重新计算,如果lost :0 ,从BlockManagerMaster删除失败的executor,重新分发失败的executor到其他worker。
5,spark worker在执行application过程中全部挂掉了
报错信息如下,
17/01/04 19:34:16 ERROR TaskSchedulerImpl: Lost executor 1 on 192.168.91.128: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
application进入停滞状态,等待worker注册。
启动worker后:executor重新注册
删除不可用executor,并重新注册。
CoarseGrainedSchedulerBackend$DriverEndpoint: Asked to remove non-existent executor 0
CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.91.128:55126) with ID 1
worker启动后application恢复正常返回结果,但仍然报错如下。(2.1.0以后版本修复此bug)。
org.apache.spark.SparkException: Could not find CoarseGrainedScheduler
下一篇讲述Spark源码调试环境的搭建
网友评论