美文网首页嵌牛IT观察
用Python从零开始构造决策树

用Python从零开始构造决策树

作者: 苹果941024 | 来源:发表于2017-12-13 20:52 被阅读0次

姓名:郑红                                  学号:17101223385

本文转自http://developer.51cto.com/art/201712/560689.htm

【嵌牛导读】:本章介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策树

【嵌牛鼻子】:Python       决策树

【嵌牛提问】:怎么构造决策树?

【嵌牛正文】:起步

本章介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策树。

熵的计算公式:

对应的 python 代码:

条件熵的计算

根据计算方法:

对应的 python 代码:

其中参数 future_list 是某一特征向量组成的列表,result_list 是 label 列表。

信息增益

根据信息增益的计算方法:

对应的python代码:

..

定义决策树的节点

作为树的节点,要有左子树和右子树是必不可少的,除此之外还需要其他信息:

树的节点会有两种状态,叶子节点中 results 属性将保持当前的分类结果。非叶子节点中, col 保存着该节点计算的特征索引,根据这个索引来创建左右子树。

has_calc_index 属性表示在到达此节点时,已经计算过的特征索引。特征索引的数据集上表现是列的形式,如数据集(不包含结果集):

有三条数据,三个特征,那么第一个特征对应了第一列 [1, 0, 0] ,它的索引是 0 。

递归的停止条件

本章将构造出完整的决策树,所以递归的停止条件是所有待分析的训练集都属于同一类:

从训练集中筛选最佳的特征

因此计算节点就是调用 best_index = choose_best_future(node.data_set, node.labels, node.has_calc_index) 来获取最佳的信息增益的特征索引。

构造决策树

决策树中需要一个属性来指向树的根节点,以及特征数量。不需要保存训练集和结果集,因为这部分信息是保存在树的节点中的。

创建决策树

这里需要递归来创建决策树:

根据信息增益的特征索引将训练集再划分为左右两个子树。

训练函数

也就是要有一个 fit 函数:

清理训练集

训练后,树节点中数据集和结果集等就没必要的,该模型只要 col 和 result 就可以了:

预测函数

提供一个预测函数:

测试

数据集使用前面《应用篇》中的向量化的训练集:

相关文章

  • 用Python从零开始构造决策树

    姓名:郑红 学号:17101223385 本文转自http://developer.51cto.com/art/2...

  • 用Python从零开始创建区块链

    一、用Python从零开始创建区块链 [用Python从零开始创建区块链]http://learnblockcha...

  • Python从零开始构建区块链之网络+共识(上)

    上一篇:用Python从零开始构建区块链之数据层理解 (上)准备工作 前言 上篇文章用代码简单构造了区块链数据层各...

  • 写一个简单的Python解释器

    注:采转归档,自己学习查询使用 用 Python 从零开始写一个简单的解释器(1)用 Python 从零开始写一个...

  • 决策树

    构造和剪枝 我们在做决策树的时候,会经历两个阶段:构造和剪枝。 构造就是生成一棵完整的决策树。简单来说,构造的过程...

  • 决策树

    整理自《极客时间——数据分析》课程 一.决策树的工作原理 在做决策树时,需要经历两个阶段:构造和剪枝。 构造 构造...

  • 2. 决策树

    这一章分为三部分: 决策树的构造方法 测试和存储分类器 使用matplotlib画出决策树结构 1. 决策树的构造...

  • 决策树算法

    运行平台:Windows Python版本:Python3.x IDE:pycharm 一、决策树 决策树是什么?...

  • Python 面向对象之第二回合

    函数版用例 面向对象用例 总结 python构造方法 小案例

  • [机器学习]决策树

    决策树 @(技术博客)[机器学习, 决策树, python] 学习决策树首先要搞清楚决策树是什么(what),在弄...

网友评论

    本文标题: 用Python从零开始构造决策树

    本文链接:https://www.haomeiwen.com/subject/eagzixtx.html