1、JVM 整体组成
JVM 整体组成可分为以下四个部分:
- 类加载器(ClassLoader)
- 运行时数据区(Runtime Data Area)
- 执行引擎(Execution Engine)
- 本地库接口(Native Interface)
2、JVM内存分哪几个区,每个区的作用是什么?
方法区:
- 有时候也成为永久代,在该区内很少发生垃圾回收,但是并不代表不发生GC,在这里进行的GC主要是对方法区里的常量池和对类型的卸载
- 方法区主要用来存储已被虚拟机加载的类的信息、常量、静态变量和即时编译器编译后的代码等数据。
- 该区域是被线程共享的。
- 方法区里有一个运行时常量池,用于存放静态编译产生的字面量和符号引用。该常量池具有动态性,也就是说常量并不一定是编译时确定,运行时生成的常量也会存在这个常量池中。
虚拟机栈:
- 虚拟机栈也就是我们平常所称的栈内存,它为java方法服务,每个方法在执行的时候都会创建一个栈帧,用于存储局部变量表、操作数栈、动态链接和方法出口等信息。
- 虚拟机栈是线程私有的,它的生命周期与线程相同。
- 局部变量表里存储的是基本数据类型、returnAddress类型(指向一条字节码指令的地址)和对象引用,这个对象引用有可能是指向对象起始地址的一个指针,也有可能是代表对象的句柄或者与对象相关联的位置。局部变量所需的内存空间在编译器间确定
- 操作数栈的作用主要用来存储运算结果以及运算的操作数,它不同于局部变量表通过索引来访问,而是压栈和出栈的方式
- 每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态连接.动态链接就是将常量池中的符号引用在运行期转化为直接引用。
本地方法栈
本地方法栈和虚拟机栈类似,只不过本地方法栈为Native方法服务。
堆
java堆是所有线程所共享的一块内存,在虚拟机启动时创建,几乎所有的对象实例都在这里创建,因此该区域经常发生垃圾回收操作。
程序计数器
内存空间小,字节码解释器工作时通过改变这个计数值可以选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理和线程恢复等功能都需要依赖这个计数器完成。该内存区域是唯一一个java虚拟机规范没有规定任何OOM情况的区域。
3、什么情况下会发生栈内存溢出?
- 栈是线程私有的,栈的生命周期和线程一样,每个方法在执行的时候就会创建一个栈帧,它包含局部变量表、操作数栈、动态链接、方法出口等信息,局部变量表又包括基本数据类型和对象的引用;
- 当线程请求的栈深度超过了虚拟机允许的最大深度时,会抛出StackOverFlowError异常,方法递归调用肯可能会出现该问题
- 调整参数-xss去调整jvm栈的大小
4、如和判断一个对象是否存活?(或者GC对象的判定方法)
判断一个对象是否存活有两种方法:
引用计数法
所谓引用计数法就是给每一个对象设置一个引用计数器,每当有一个地方引用这个对象时,就将计数器加一,引用失效时,计数器就减一。当一个对象的引用计数器为零时,说明此对象没有被引用,也就是“死对象”,将会被垃圾回收.
引用计数法有一个缺陷就是无法解决循环引用问题,也就是说当对象A引用对象B,对象B又引用者对象A,那么此时A,B对象的引用计数器都不为零,也就造成无法完成垃圾回收,所以主流的虚拟机都没有采用这种算法。
可达性算法(引用链法)
该算法的思想是:从一个被称为GC Roots的对象开始向下搜索,如果一个对象到GC Roots没有任何引用链相连时,则说明此对象不可用。
在java中可以作为GC Roots的对象有以下几种:
- 虚拟机栈中引用的对象
- 方法区类静态属性引用的对象
- 方法区常量池引用的对象
- 本地方法栈JNI引用的对象
虽然这些算法可以判定一个对象是否能被回收,但是当满足上述条件时,一个对象比不一定会被回收。当一个对象不可达GC Root时,这个对象并 不会立马被回收,而是出于一个死缓的阶段,若要被真正的回收需要经历两次标记
如果对象在可达性分析中没有与GC Root的引用链,那么此时就会被第一次标记并且进行一次筛选,筛选的条件是是否有必要执行finalize()方法。当对象没有覆盖finalize()方法或者已被虚拟机调用过,那么就认为是没必要的。
如果该对象有必要执行finalize()方法,那么这个对象将会放在一个称为F-Queue的对队列中,虚拟机会触发一个Finalize()线程去执行,此线程是低优先级的,并且虚拟机不会承诺一直等待它运行完,这是因为如果finalize()执行缓慢或者发生了死锁,那么就会造成F-Queue队列一直等待,造成了内存回收系统的崩溃。GC对处于F-Queue中的对象进行第二次被标记,这时,该对象将被移除”即将回收”集合,等待回收。
5、JVM中一次完整的GC是什么样子的?对象如何晋升到老年代?
- java堆 = 新生代+老年代;
- 新生代 = Eden + Suivivor(S0 + S1),默认分配比例是8:1:1;
- 当Eden区空间满了的时候,就会触发一次Minor GC,以收集新生代的垃圾,存活下来的对象会被分配到Survivor区
- 大对象(需要大量连续内存空间的对象)会直接被分配到老年代
- 如果对象在Eden中出生,并且在经历过一次Minor GC之后仍然存活,被分配到存活区的话,年龄+1,此后每经历过一次Minor GC并且存活下来,年龄就+1,当年龄达到15的时候,会被晋升到老年代;
- 当老年代满了,而无法容纳更多对象的话,会触发一次full gc;full gc存储的是整个内存堆(包括年轻代和老年代);;
- Major GC是发生在老年代的GC,清理老年区,经常会伴随至少一次minor gc;
6、运行时数据区组成
- 程序计数器(Program Counter Register)
- Java虚拟机栈(Java Virtual Machine Stacks)
- 本地方法栈(Native Method Stack)
- Java堆(Java Heap)
- 方法区(Methed Area)
7、java中会存在内存泄漏吗?请简单描述
会。自己实现堆载的数据结构时有可能会出现内存泄露。
8、简述java垃圾回收机制?
在java中,程序员是不需要显示的去释放一个对象的内存的,而是由虚拟机自行执行。在JVM中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,扫面那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。
9、Serial 与 Parallel GC 之间的不同之处?
Serial 与 Parallel 在 GC 执行的时候都会引起 stop-the-world。它们之间主要不同 serial 收集器是默认的复制收集器,执行 GC 的时候只有一个线程,而parallel 收集器使用多个 GC 线程来执行。
10、Java中的垃圾回收算法?
java中有四种垃圾回收算法,分别是标记清除法、标记整理法、复制算法、分代收集算法;
标记清除法:
第一步:利用可达性去遍历内存,把存活对象和垃圾对象进行标记;
第二步:在遍历一遍,将所有标记的对象回收掉;
特点:效率不行,标记和清除的效率都不高;标记和清除后会产生大量的不连续的空间分片,可能会导致之后程序运行的时候需分配大对象而找不到连续分片而不得不触发一次GC;
标记整理法:
第一步:利用可达性去遍历内存,把存活对象和垃圾对象进行标记;
第二步:将所有的存活的对象向一段移动,将端边界以外的对象都回收掉;
特点:适用于存活对象多,垃圾少的情况;需要整理的过程,无空间碎片产生;
复制算法:
将内存按照容量大小分为大小相等的两块,每次只使用一块,当一块使用完了,就将还存活的对象移到另一块上,然后在把使用过的内存空间移除;
特点:不会产生空间碎片;内存使用率极低;
分代收集算法:
根据内存对象的存活周期不同,将内存划分成几块,java虚拟机一般将内存分成新生代和老生代,在新生代中,有大量对象死去和少量对象存活,所以采用复制算法,只需要付出少量存活对象的复制成本就可以完成收集;老年代中因为对象的存活率极高,没有额外的空间对他进行分配担保,所以采用标记清理或者标记整理算法进行回收;
11、怎样通过 Java 程序来判断 JVM 是 32 位 还是 64位?
你可以检查某些系统属性如 sun.arch.data.model 或 os.arch 来获取该信息。
12、java中垃圾收集的方法有哪些?
- 标记-清除:
这是垃圾收集算法中最基础的,根据名字就可以知道,它的思想就是标记哪些要被回收的对象,然后统一回收。这种方法很简单,但是会有两个主要问题:1.效率不高,标记和清除的效率都很低;2.会产生大量不连续的内存碎片,导致以后程序在分配较大的对象时,由于没有充足的连续内存而提前触发一次GC动作。
- 复制算法:
为了解决效率问题,复制算法将可用内存按容量划分为相等的两部分,然后每次只使用其中的一块,当一块内存用完时,就将还存活的对象复制到第二块内存上,然后一次性清楚完第一块内存,再将第二块上的对象复制到第一块。但是这种方式,内存的代价太高,每次基本上都要浪费一般的内存。
于是将该算法进行了改进,内存区域不再是按照1:1去划分,而是将内存划分为8:1:1三部分,较大那份内存交Eden区,其余是两块较小的内存区叫Survior区。每次都会优先使用Eden区,若Eden区满,就将对象复制到第二块内存区上,然后清除Eden区,如果此时存活的对象太多,以至于Survivor不够时,会将这些对象通过分配担保机制复制到老年代中。(java堆又分为新生代和老年代)
- 标记-整理
该算法主要是为了解决标记-清除,产生大量内存碎片的问题;当对象存活率较高时,也解决了复制算法的效率问题。它的不同之处就是在清除对象的时候现将可回收对象移动到一端,然后清除掉端边界以外的对象,这样就不会产生内存碎片了。
- 分代收集:
现在的虚拟机垃圾收集大多采用这种方式,它根据对象的生存周期,将堆分为新生代和老年代。在新生代中,由于对象生存期短,每次回收都会有大量对象死去,那么这时就采用复制算法。老年代里的对象存活率较高,没有额外的空间进行分配担保,所以可以使用标记-整理 或者 标记-清除。
13、如何判断一个对象是否应该被回收?
判断对象是否存活一般有两种方式:
- 引用计数:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收。此方法简单,无法解决对象相互循环引用的问题。
- 可达性分析(Reachability Analysis):从GC Roots开始向下搜索,搜索所走过的路径称为引用链。当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的,不可达对象。
14、调优命令
Sun JDK监控和故障处理命令有jps jstat jmap jhat jstack jinfo
- jps,JVM Process Status Tool,显示指定系统内所有的HotSpot虚拟机进程。
- jstat,JVM statistics Monitoring是用于监视虚拟机运行时状态信息的命令,它可以显示出虚拟机进程中的类装载、内存、垃圾收集、JIT编译等运行数据。
- jmap,JVM Memory Map命令用于生成heap dump文件
- jhat,JVM Heap Analysis Tool命令是与jmap搭配使用,用来分析jmap生成的dump,jhat内置了一个微型的HTTP/HTML服务器,生成dump的分析结果后,可以在浏览器中查看
- jstack,用于生成java虚拟机当前时刻的线程快照。
- jinfo,JVM Configuration info 这个命令作用是实时查看和调整虚拟机运行参数。
15、JRE、JDK、JVM 及 JIT 之间有什么不同?
- JRE 代表 Java 运行时(Java run-time),是运行 Java 引用所必须的。
- JDK 代表 Java 开发工具(Java development kit),是 Java 程序打开发工具,如 Java编译器,它也包含 JRE。
- JVM 代表 Java 虚拟机(Java virtual machine),它的责任是运行 Java 应用。JIT 代表即时编译(Just In Time compilation),当代码执行的次数超过一定的阈值时,会将 Java 字节码转换为本地代码,如,主要的热点代码会被准换为本地代码,这样有利大幅度提高 Java 应用的性能。
16、如何判断一个对象是否存活?
判断一个对象是否存活,分为两种算法1:引用计数法;2:可达性分析算法;
- 引用计数法:
给每一个对象设置一个引用计数器,当有一个地方引用该对象的时候,引用计数器就+1,引用失效时,引用计数器就-1;当引用计数器为0的时候,就说明这个对象没有被引用,也就是垃圾对象,等待回收;
缺点:无法解决循环引用的问题,当A引用B,B也引用A的时候,此时AB对象的引用都不为0,此时也就无法垃圾回收,所以一般主流虚拟机都不采用这个方法;
- 可达性分析法
从一个被称为GC Roots的对象向下搜索,如果一个对象到GC Roots没有任何引用链相连接时,说明此对象不可用,在java中可以作为GC Roots的对象有以下几种:
- 虚拟机栈中引用的对象
- 方法区类静态属性引用的变量
- 方法区常量池引用的对象
- 本地方法栈JNI引用的对象
但一个对象满足上述条件的时候,不会马上被回收,还需要进行两次标记;第一次标记:判断当前对象是否有finalize()方法并且该方法没有被执行过,若不存在则标记为垃圾对象,等待回收;若有的话,则进行第二次标记;第二次标记将当前对象放入F-Queue队列,并生成一个finalize线程去执行该方法,虚拟机不保证该方法一定会被执行,这是因为如果线程执行缓慢或进入了死锁,会导致回收系统的崩溃;如果执行了finalize方法之后仍然没有与GC Roots有直接或者间接的引用,则该对象会被回收;
17、有哪几种垃圾回收器,有哪些优缺点?cms和g1的区别?
垃圾回收器主要分为以下几种:Serial、ParNew、Parallel Scavenge、Serial Old、Parallel Old、CMS、G1;
- Serial:
单线程的收集器,收集垃圾时,必须stop the world,使用复制算法。
- ParNew:
Serial收集器的多线程版本,也需要stop the world,复制算法.
- Parallel Scavenge:
新生代收集器,复制算法的收集器,并发的多线程收集器,目标是达到一个可控的吞吐量,和ParNew的最大区别是GC自动调节策略;虚拟机会根据系统的运行状态收集性能监控信息,动态设置这些参数,以提供最优停顿时间和最高的吞吐量;
- Serial Old:
Serial收集器的老年代版本,单线程收集器,使用标记整理算法。
- Parallel Old:
是Parallel Scavenge收集器的老年代版本,使用多线程,标记-整理算法。
- CMS:
是一种以获得最短回收停顿时间为目标的收集器,标记清除算法,运作过程:初始标记,并发标记,重新标记,并发清除,收集结束会产生大量空间碎片;
- G1:
标记整理算法实现,运作流程主要包括以下:初始标记,并发标记,最终标记,筛选回收。不会产生空间碎片,可以精确地控制停顿;
G1将整个堆分为大小相等的多个Region(区域),G1跟踪每个区域的垃圾大小,在后台维护一个优先级列表,每次根据允许的收集时间,优先回收价值最大的区域,已达到在有限时间内获取尽可能高的回收效率;
18、类加载器双亲委派模型机制?
当一个类收到了类加载请求时,不会自己先去加载这个类,而是将其委派给父类,由父类去加载,如果此时父类不能加载,反馈给子类,由子类去完成类的加载。
19、什么是类加载器,类加载器有哪些?
实现通过类的权限定名获取该类的二进制字节流的代码块叫做类加载器。
主要有一下四种类加载器:
- 启动类加载器(Bootstrap ClassLoader)用来加载java核心类库,无法被java程序直接引用。
- 扩展类加载器(extensions class loader):它用来加载 Java 的扩展库。Java 虚拟机的实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类。
- 系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader()来获取它。
- 用户自定义类加载器,通过继承 java.lang.ClassLoader类的方式实现。
20、调优工具
常用调优工具分为两类,jdk自带监控工具:jconsole和jvisualvm,第三方有:MAT(Memory Analyzer Tool)、GChisto。
- jconsole,Java Monitoring and Management Console是从java5开始,在JDK中自带的java监控和管理控制台,用于对JVM中内存,线程和类等的监控
- jvisualvm,jdk自带全能工具,可以分析内存快照、线程快照;监控内存变化、GC变化等。
- MAT,Memory Analyzer Tool,一个基于Eclipse的内存分析工具,是一个快速、功能丰富的Java heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗
- GChisto,一款专业分析gc日志的工具
21、JVM永久代中会发生垃圾回收么
垃圾回收不会发生在永久代,如果永久代满了或者是超过了临界值,会触发完全垃圾回收(Full GC)。如果你仔细查看垃圾收集器的输出信息,就会发现永久代也是被回收的。这就是为什么正确的永久代大小对避免Full GC是非常重要的原因。请参考下Java8:从永久代到元数据区 (注:Java8中已经移除了永久代,新加了一个叫做元数据区的native内存区)
22、JVM 内存区域
VM 内存区域主要分为线程私有区域【程序计数器、虚拟机栈、本地方法区】、线程共享区域【JAVA 堆、方法区】、直接内存。
线程私有数据区域生命周期与线程相同, 依赖用户线程的启动/结束 而 创建/销毁(在 Hotspot VM 内, 每个线程都与操作系统的本地线程直接映射, 因此这部分内存区域的存/否跟随本地线程的生/死对应)。
线程共享区域随虚拟机的启动/关闭而创建/销毁。
直接内存并不是 JVM 运行时数据区的一部分, 但也会被频繁的使用: 在 JDK 1.4 引入的 NIO 提供了基于Channel与 Buffer的IO方式, 它可以使用Native函数库直接分配堆外内存, 然后使用DirectByteBuffer 对象作为这块内存的引用进行操作(详见: Java I/O 扩展), 这样就避免了在 Java堆和 Native 堆中来回复制数据, 因此在一些场景中可以显著提高性能。
23、虚拟机栈(线程私有)
是描述java方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息。 每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。
栈帧( Frame)是用来存储数据和部分过程结果的数据结构,同时也被用来处理动态链接(Dynamic Linking)、 方法返回值和异常分派(Dispatch Exception)。 栈帧随着方法调用而创建,随着方法结束而销毁——无论方法是正常完成还是异常完成(抛出了在方法内未被捕获的异常)都算作方法结束。
24、引用的分类
- 强引用:GC时不会被回收
- 软引用:描述有用但不是必须的对象,在发生内存溢出异常之前被回收
- 弱引用:描述有用但不是必须的对象,在下一次GC时被回收
- 虚引用(幽灵引用/幻影引用):无法通过虚引用获得对象,用PhantomReference实现虚引用,虚引用用来在GC时返回一个通知。
25、方法区/永久代(线程共享)
即我们常说的永久代(Permanent Generation), 用于存储被 JVM 加载的类信息、常量、静态变量即、时编译器编译后的代码等数据.HotSpot VM把GC分代收集扩展至方法区, 即使用Java堆的永久代来实现方法区, 这样 HotSpot 的垃圾收集器就可以像管理 Java 堆一样管理这部分内存,而不必为方法区开发专门的内存管理器(永久带的内存回收的主要目标是针对常量池的回收和类型的卸载, 因此收益一般很小) 。
运行时常量池(Runtime Constant Pool)是方法区的一部分。 Class 文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量池 (Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。 Java 虚拟机对 Class 文件的每一部分(自然也包括常量池)的格式都有严格的规定,每一个字节用于存储哪种数据都必须符合规范上的要求,这样才会被虚拟机认可、装载和执行。
网友评论