代码:
#服务端
from socket import *
from threading import Thread
server = socket(AF_INET, SOCK_STREAM)
server.bind(('127.0.0.1',8099))
server.listen(5)
server.setblocking(False)
rlist=[]
wlist=[]
while True:
try:
conn, addr = server.accept()
rlist.append(conn)
print(rlist)
except BlockingIOError:
del_rlist=[]
for sock in rlist:
try:
data=sock.recv(1024)
if not data:
del_rlist.append(sock)
wlist.append((sock,data.upper()))
except BlockingIOError:
continue
except Exception:
sock.close()
del_rlist.append(sock)
del_wlist=[]
for item in wlist:
try:
sock = item[0]
data = item[1]
sock.send(data)
del_wlist.append(item)
except BlockingIOError:
pass
for item in del_wlist:
wlist.remove(item)
for sock in del_rlist:
rlist.remove(sock)
server.close()
#客户端
from socket import *
client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8099))
while True:
msg=input('>>: ').strip()
if not msg:continue
client.send(msg.encode('utf-8'))
data=client.recv(1024)
print(data.decode('utf-8'))
client.close()
非阻塞IO模型绝不被推荐。
There is no deny that there is a lot can be done while we are waiting for the task(which means that multiple tasks are being done backends.)
But it's got to take its toll:·
#1. 循环调用recv()将大幅度推高CPU占用率;这也是我们在代码中留一句time.sleep(2)的原因,否则在低配主机下极容易出现卡机情况
#2. 任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。
网友评论