美文网首页
树、二叉树

树、二叉树

作者: 羽裳有涯 | 来源:发表于2019-12-11 16:53 被阅读0次

我们前面的栈、队列以及线性表都是线性结构、而树是非线性结构的。因此,树中的元素之间一般不存在类似线性结构的一对一的关系,而表现更多的是多对多的关系。直观的看,它是数据元素(树中的节点),按分支关系组织起来的结构。很显然,树形结构是比线性结构更复杂的一种数据结构类型。

1、树的定义

它具有以下特点:

(01) 每个节点有零个或多个子节点;
(02) 没有父节点的节点称为根节点;
(03) 每一个非根节点有且只有一个父节点;
(04) 除了根节点外,每个子节点可以分为多个不相交的子树。

2、树的基本术语

若一个结点有子树,那么该结点称为子树根的"双亲"子树的根是该结点的"孩子"。有相同双亲的结点互为"兄弟"。一个结点的所有子树上的任何结点都是该结点的后裔。从根结点到某个结点的路径上的所有结点都是该结点的祖先。

结点的度:结点拥有的子树的数目。
叶子:度为零的结点。
分支结点:度不为零的结点。
树的度:树中结点的最大的度。

层次:根结点的层次为1,其余结点的层次等于该结点的双亲结点的层次加1。
树的高度:树中结点的最大层次。
无序树:如果树中结点的各子树之间的次序是不重要的,可以交换位置。
有序树:如果树中结点的各子树之间的次序是重要的, 不可以交换位置。
森林:0个或多个不相交的树组成。对森林加上一个根,森林即成为树;删去根,树即成为森林。

二叉树的介绍

1、二叉树的定义

二叉树是每个节点最多有两个子树的树结构。它有五种基本形态:二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。


2、二叉树和树的主要区别

1、树中节点的最大度数没有限制,而二叉树节点的度不超过2。

2、树中节点的孩子节点,无左右之分,而二叉树中是有区分的,即孩子是有区别的:左孩子、右孩子,且次序不可颠倒。

3、树的结点个数至少为1,而二叉树的结点个数可以为0。

3、二叉树的性质

二叉树有以下几个性质:TODO(上标和下标)
性质1:二叉树第i层上的结点数目最多为 2{i-1} (i≥1)。
性质2:深度为k的二叉树至多有2{k}-1个结点(k≥1)。
性质3:包含n个结点的二叉树的高度至少为log2 (n+1)。
性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1。

4、其它二叉树

4.1满二叉树

定义:高度为h,并且由2{h} –1个结点的二叉树,被称为满二叉树。


4.2完全二叉树

定义:一棵二叉树中,只有最下面两层结点的度可以小于2,并且最下一层的叶结点集中在靠左的若干位置上。这样的二叉树称为完全二叉树。
特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。


4.3斜二叉树

相关文章

  • 数据结构与算法-二叉树02

    二叉树的定义 二叉树的特点 二叉树的五中基本形态 其他二叉树 斜二叉树 满二叉树 完全二叉树图片.png满二叉树一...

  • 树与二叉树

    **树 ** 二叉树 满二叉树 完全二叉树 三种遍历方法 树与二叉树的区别 二叉查找树 平衡二叉树 红黑二叉树

  • 数据结构学习笔记

    1. 树,森林,二叉树之间的转换 树转换为二叉树 森林转为二叉树 二叉树转为树 二叉树转为森林 2. 哈弗曼树

  • 二叉树

    二叉树 高度 深度真二叉树 满二叉树 完全二叉树 二叉树遍历前序 中序 后序层序遍历 翻转二叉树 递归法...

  • Java_二叉树概念及基本操作

    树、森林和二叉树的转换 树转换为二叉树 森林转换为树 二叉树转换为树 二叉树转换为森林 代码

  • 14-树&二叉树&真二叉树&满二叉树

    一、树 二、二叉树 三、真二叉树 四、满二叉树

  • 二叉树 基础操作

    二叉树的使用 二叉树结构 先序创建二叉树 DFS 先序遍历二叉树 中序遍历二叉树 后序遍历二叉树 BFS 层次遍历...

  • 剑指 offer:39、平衡二叉树

    39. 平衡二叉树 题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树。 解题思路: 平衡二叉树:Wiki:在...

  • 四、树与二叉树

    四、树与二叉树 1. 二叉树的顺序存储结构 二叉树的顺序存储就是用数组存储二叉树。二叉树的每个结点在顺序存储中都有...

  • 数据结构-树

    树,二叉树的定义: 二叉树是N个节点的有效集,二叉树与无序数不同,二叉树每个节点只有两个子树。 二叉树的性质: 二...

网友评论

      本文标题:树、二叉树

      本文链接:https://www.haomeiwen.com/subject/ehzogctx.html