美文网首页
2019-02-04

2019-02-04

作者: Comolli | 来源:发表于2019-02-04 18:07 被阅读0次

    import pandasas pd

    import matplotlib.pyplotas plt

    import numpyas np

    data= pd.read_csv("creditcard.csv")

    a=pd.value_counts(data["Class"])

    count_classes= pd.value_counts(data['Class'], sort = True).sort_index()

    from sklearn.preprocessingimport StandardScaler

    # 1、StandardScaler就是z-score方法

    # 将原始数据归一化为均值为0,方差为1的数据集 并将之存储到Amount列

    data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))

    #  删除数据中Time  Amount 列

    # 删除没用的两列数据,得到一个新的数据集

    data= data.drop(['Time','Amount'],axis=1)

    # 先对数据进行切分

    X= data.ix[:, data.columns!= 'Class']

    y= data.ix[:, data.columns== 'Class']

    # 随机下采样

    # 筛选出class为1的数据总数,并取得其索引值

    # Number of data points in the minority class

    # 统计异常值得个数

    number_records_fraud= len(data[data.Class== 1])

    # 统计欺诈样本的下标,并变成矩阵的格式:

    fraud_indices= np.array(data[data.Class== 1].index)

    # Picking the indices of the normal classes

    # 记录正常值的下标:

    # 把class为0的数据索引拿到手

    normal_indices= data[data.Class== 0].index

    # Out of the indices we picked, randomly select "x" number (number_records_fraud)

    # 从normal_indices中抽取number_records_fraud

    # 从正常值的索引中,选择和异常值相等个数的样本,保证样本的均衡:

    # np.random.choice(a,size, replace, p):在a中以概率p随机选择size个数据,replace是指是否有放回;

    random_normal_indices= np.random.choice(normal_indices, number_records_fraud, replace = False)

    # 将数据转换成数组:

    # 转换成numpy的array格式

    random_normal_indices= np.array(random_normal_indices)

    # Appending the 2 indices

    # fraud_indices:欺诈样本的下标;random_normal_indices:正常值数组;

    # concatenate:数据库的拼接;axis=1:按照对应行的数据进行拼接;

    # 将两组索引数据连接成性的数据索引

    under_sample_indices= np.concatenate([fraud_indices,random_normal_indices])

    # Under sample dataset

    # loc["a","b"]:表示第a行,第b列;

    # iloc[1,1]:按照行列来索引,左式为第二行第二列;

    # 获取下标所在行的所有列,即得到训练所需要的数据集:

    # 下采样数据集

    # 定位到真正的数据

    under_sample_data= data.iloc[under_sample_indices,:]

    # 将数据集按照class列进行分类

    # 切分出下采样数据的特征和标签

    X_undersample= under_sample_data.ix[:, under_sample_data.columns!= 'Class']

    y_undersample= under_sample_data.ix[:, under_sample_data.columns== 'Class']

    # Showing ratio

    # 展示下比例

    # 计算正负比例为0.5

    print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class== 0])/len(under_sample_data))

    print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class== 1])/len(under_sample_data))

    print("Total number of transactions in resampled data: ", len(under_sample_data))

    # 导入交叉验证模块的数据切分

    from sklearn.model_selectionimport train_test_split

    # Whole dataset

    # 交叉验证

    # 随机划分训练集和测试集:x为除了class之外的其他的值,y为最终的结果列;

    # test_size:样本占比;

    # 从原始集中获取到训练集与测试集:

    # train_test_split:x,y按照test_size的尺寸随机提取数据,然后划分到四个数据集中

    # 对全部数据集进行切分,注意使用相同的随机策略

    X_train, X_test, y_train, y_test= train_test_split(X,y,test_size = 0.3, random_state = 0)

    print("Number transactions train dataset: ", len(X_train))

    print("Number transactions test dataset: ", len(X_test))

    print("Total number of transactions: ", len(X_train)+len(X_test))

    # Undersampled dataset

    # 数据平衡之后的数据中获取到训练集与测试集:

    # 对下采样数据集进行切分

    X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample= train_test_split(X_undersample

    ,y_undersample

    ,test_size = 0.3

                                                                                                      ,random_state = 0)

    print("")

    print("Number transactions train dataset: ", len(X_train_undersample))

    print("Number transactions test dataset: ", len(X_test_undersample))

    print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))

    相关文章

      网友评论

          本文标题:2019-02-04

          本文链接:https://www.haomeiwen.com/subject/ejapsqtx.html